Compare commits

...

4 Commits

Author SHA1 Message Date
srikanthccv
4b117c85e6 chore: update return 2026-02-15 12:44:09 +05:30
srikanthccv
3e1a48acf9 chore: update tests 2026-02-15 12:38:48 +05:30
Srikanth Chekuri
6d282dfe68 Merge branch 'main' into fix-issues 2026-02-14 22:42:14 +05:30
srikanthccv
e3c04b378a fix: update rate/increase query and address several issues in builder queries 2026-02-14 11:02:09 +05:30
26 changed files with 565 additions and 1090 deletions

View File

@@ -176,25 +176,6 @@ Wir haben Benchmarks veröffentlicht, die Loki mit SigNoz vergleichen. Schauen S
Wir ❤️ Beiträge zum Projekt, egal ob große oder kleine. Bitte lies dir zuerst die [CONTRIBUTING.md](CONTRIBUTING.md), durch, bevor du anfängst, Beiträge zu SigNoz zu machen.
Du bist dir nicht sicher, wie du anfangen sollst? Schreib uns einfach auf dem #contributing Kanal in unserer [slack community](https://signoz.io/slack)
### Unsere Projektbetreuer
#### Backend
- [Ankit Nayan](https://github.com/ankitnayan)
- [Nityananda Gohain](https://github.com/nityanandagohain)
- [Srikanth Chekuri](https://github.com/srikanthccv)
- [Vishal Sharma](https://github.com/makeavish)
#### Frontend
- [Palash Gupta](https://github.com/palashgdev)
- [Yunus M](https://github.com/YounixM)
- [Rajat Dabade](https://github.com/Rajat-Dabade)
#### DevOps
- [Prashant Shahi](https://github.com/prashant-shahi)
<br /><br />
## Dokumentation

View File

@@ -221,34 +221,6 @@ We ❤️ contributions big or small. Please read [CONTRIBUTING.md](CONTRIBUTING
Not sure how to get started? Just ping us on `#contributing` in our [slack community](https://signoz.io/slack)
### Project maintainers
#### Backend
- [Ankit Nayan](https://github.com/ankitnayan)
- [Nityananda Gohain](https://github.com/nityanandagohain)
- [Srikanth Chekuri](https://github.com/srikanthccv)
- [Vishal Sharma](https://github.com/makeavish)
- [Shivanshu Raj Shrivastava](https://github.com/shivanshuraj1333)
- [Ekansh Gupta](https://github.com/eKuG)
- [Aniket Agarwal](https://github.com/aniketio-ctrl)
#### Frontend
- [Yunus M](https://github.com/YounixM)
- [Vikrant Gupta](https://github.com/vikrantgupta25)
- [Sagar Rajput](https://github.com/SagarRajput-7)
- [Shaheer Kochai](https://github.com/ahmadshaheer)
- [Amlan Kumar Nandy](https://github.com/amlannandy)
- [Sahil Khan](https://github.com/sawhil)
- [Aditya Singh](https://github.com/aks07)
- [Abhi Kumar](https://github.com/ahrefabhi)
#### DevOps
- [Prashant Shahi](https://github.com/prashant-shahi)
- [Vibhu Pandey](https://github.com/therealpandey)
<br /><br />

View File

@@ -187,25 +187,6 @@ Jaeger 仅仅是一个分布式追踪系统。 但是 SigNoz 可以提供 metric
如果你不知道如何开始? 只需要在 [slack 社区](https://signoz.io/slack) 通过 `#contributing` 频道联系我们。
### 项目维护人员
#### 后端
- [Ankit Nayan](https://github.com/ankitnayan)
- [Nityananda Gohain](https://github.com/nityanandagohain)
- [Srikanth Chekuri](https://github.com/srikanthccv)
- [Vishal Sharma](https://github.com/makeavish)
#### 前端
- [Palash Gupta](https://github.com/palashgdev)
- [Yunus M](https://github.com/YounixM)
- [Rajat Dabade](https://github.com/Rajat-Dabade)
#### 运维开发
- [Prashant Shahi](https://github.com/prashant-shahi)
<br /><br />
## 文档

View File

@@ -285,7 +285,6 @@ flagger:
config:
boolean:
use_span_metrics: true
interpolation_enabled: false
kafka_span_eval: false
string:
float:

View File

@@ -3,9 +3,8 @@ package flagger
import "github.com/SigNoz/signoz/pkg/types/featuretypes"
var (
FeatureUseSpanMetrics = featuretypes.MustNewName("use_span_metrics")
FeatureInterpolationEnabled = featuretypes.MustNewName("interpolation_enabled")
FeatureKafkaSpanEval = featuretypes.MustNewName("kafka_span_eval")
FeatureUseSpanMetrics = featuretypes.MustNewName("use_span_metrics")
FeatureKafkaSpanEval = featuretypes.MustNewName("kafka_span_eval")
)
func MustNewRegistry() featuretypes.Registry {
@@ -18,14 +17,6 @@ func MustNewRegistry() featuretypes.Registry {
DefaultVariant: featuretypes.MustNewName("disabled"),
Variants: featuretypes.NewBooleanVariants(),
},
&featuretypes.Feature{
Name: FeatureInterpolationEnabled,
Kind: featuretypes.KindBoolean,
Stage: featuretypes.StageExperimental,
Description: "Controls whether to enable interpolation",
DefaultVariant: featuretypes.MustNewName("disabled"),
Variants: featuretypes.NewBooleanVariants(),
},
&featuretypes.Feature{
Name: FeatureKafkaSpanEval,
Kind: featuretypes.KindBoolean,

View File

@@ -483,6 +483,22 @@ func (v *filterExpressionVisitor) VisitComparison(ctx *grammar.ComparisonContext
value1 := v.Visit(values[0])
value2 := v.Visit(values[1])
switch value1.(type) {
case float64:
if _, ok := value2.(float64); !ok {
v.errors = append(v.errors, fmt.Sprintf("value type mismatch for key %s: expected number for both operands", keys[0].Name))
return ""
}
case string:
if _, ok := value2.(string); !ok {
v.errors = append(v.errors, fmt.Sprintf("value type mismatch for key %s: expected string for both operands", keys[0].Name))
return ""
}
default:
v.errors = append(v.errors, fmt.Sprintf("value type mismatch for key %s: operands must be number or string", keys[0].Name))
return ""
}
var conds []string
for _, key := range keys {
condition, err := v.conditionBuilder.ConditionFor(context.Background(), key, op, []any{value1, value2}, v.builder, v.startNs, v.endNs)
@@ -855,7 +871,7 @@ func (v *filterExpressionVisitor) VisitKey(ctx *grammar.KeyContext) any {
// 1. either user meant key ( this is already handled above in fieldKeysForName )
// 2. or user meant `attribute.key` we look up in the map for all possible field keys with name 'attribute.key'
// Note:
// Note:
// If user only wants to search `attribute.key`, then they have to use `attribute.attribute.key`
// If user only wants to search `key`, then they have to use `key`
// If user wants to search both, they can use `attribute.key` and we will resolve the ambiguity

View File

@@ -375,13 +375,6 @@ func mergeAndEnsureBackwardCompatibility(ctx context.Context, logger *slog.Logge
config.Flagger.Config.Boolean[flagger.FeatureKafkaSpanEval.String()] = os.Getenv("KAFKA_SPAN_EVAL") == "true"
}
if os.Getenv("INTERPOLATION_ENABLED") != "" {
logger.WarnContext(ctx, "[Deprecated] env INTERPOLATION_ENABLED is deprecated and scheduled for removal. Please use SIGNOZ_FLAGGER_CONFIG_BOOLEAN_INTERPOLATION__ENABLED instead.")
if config.Flagger.Config.Boolean == nil {
config.Flagger.Config.Boolean = make(map[string]bool)
}
config.Flagger.Config.Boolean[flagger.FeatureInterpolationEnabled.String()] = os.Getenv("INTERPOLATION_ENABLED") == "true"
}
}
func (config Config) Collect(_ context.Context, _ valuer.UUID) (map[string]any, error) {

View File

@@ -5,6 +5,7 @@ import (
"fmt"
"log/slog"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/factory"
"github.com/SigNoz/signoz/pkg/querybuilder"
"github.com/SigNoz/signoz/pkg/telemetrymetrics"
@@ -73,7 +74,7 @@ func (b *meterQueryStatementBuilder) buildPipelineStatement(
cteArgs [][]any
)
if b.metricsStatementBuilder.CanShortCircuitDelta(query) {
if qbtypes.CanShortCircuitDelta(query.Aggregations[0]) {
// spatial_aggregation_cte directly for certain delta queries
if frag, args, err := b.buildTemporalAggDeltaFastPath(ctx, start, end, query, keys, variables); err != nil {
return nil, err
@@ -91,8 +92,9 @@ func (b *meterQueryStatementBuilder) buildPipelineStatement(
}
// spatial_aggregation_cte
frag, args := b.buildSpatialAggregationCTE(ctx, start, end, query, keys)
if frag != "" {
if frag, args, err := b.buildSpatialAggregationCTE(ctx, start, end, query, keys); err != nil {
return nil, err
} else if frag != "" {
cteFragments = append(cteFragments, frag)
cteArgs = append(cteArgs, args)
}
@@ -122,13 +124,16 @@ func (b *meterQueryStatementBuilder) buildTemporalAggDeltaFastPath(
for _, g := range query.GroupBy {
col, err := b.fm.ColumnExpressionFor(ctx, &g.TelemetryFieldKey, keys)
if err != nil {
return "", []any{}, err
return "", nil, err
}
sb.SelectMore(col)
}
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
}
@@ -150,7 +155,7 @@ func (b *meterQueryStatementBuilder) buildTemporalAggDeltaFastPath(
Variables: variables,
}, start, end)
if err != nil {
return "", []any{}, err
return "", nil, err
}
}
if filterWhere != nil {
@@ -208,8 +213,11 @@ func (b *meterQueryStatementBuilder) buildTemporalAggDelta(
}
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality,
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality,
query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
}
@@ -278,7 +286,10 @@ func (b *meterQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
}
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
baseSb.SelectMore(fmt.Sprintf("%s AS per_series_value", aggCol))
baseSb.From(fmt.Sprintf("%s.%s AS points", DBName, tbl))
@@ -315,25 +326,23 @@ func (b *meterQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
switch query.Aggregations[0].TimeAggregation {
case metrictypes.TimeAggregationRate:
rateExpr := fmt.Sprintf(telemetrymetrics.RateWithoutNegative, start, start)
wrapped := sqlbuilder.NewSelectBuilder()
wrapped.Select("ts")
for _, g := range query.GroupBy {
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", rateExpr))
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", telemetrymetrics.RateTmpl))
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
case metrictypes.TimeAggregationIncrease:
incExpr := fmt.Sprintf(telemetrymetrics.IncreaseWithoutNegative, start, start)
wrapped := sqlbuilder.NewSelectBuilder()
wrapped.Select("ts")
for _, g := range query.GroupBy {
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", incExpr))
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", telemetrymetrics.IncreaseTmpl))
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
@@ -348,7 +357,15 @@ func (b *meterQueryStatementBuilder) buildSpatialAggregationCTE(
_ uint64,
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
_ map[string][]*telemetrytypes.TelemetryFieldKey,
) (string, []any) {
) (string, []any, error) {
if query.Aggregations[0].SpaceAggregation.IsZero() {
return "", nil, errors.Newf(
errors.TypeInvalidInput,
errors.CodeInvalidInput,
"invalid space aggregation, should be one of the following: [`sum`, `avg`, `min`, `max`, `count`]",
)
}
sb := sqlbuilder.NewSelectBuilder()
sb.Select("ts")
@@ -365,5 +382,5 @@ func (b *meterQueryStatementBuilder) buildSpatialAggregationCTE(
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
q, args := sb.BuildWithFlavor(sqlbuilder.ClickHouse)
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args, nil
}

View File

@@ -3,6 +3,7 @@ package telemetrymeter
import (
"time"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/types/metrictypes"
)
@@ -63,7 +64,7 @@ func AggregationColumnForSamplesTable(
temporality metrictypes.Temporality,
timeAggregation metrictypes.TimeAggregation,
tableHints *metrictypes.MetricTableHints,
) string {
) (string, error) {
tableName := WhichSamplesTableToUse(start, end, metricType, timeAggregation, tableHints)
var aggregationColumn string
switch temporality {
@@ -190,5 +191,13 @@ func AggregationColumnForSamplesTable(
}
}
return aggregationColumn
if aggregationColumn == "" {
return "", errors.Newf(
errors.TypeInvalidInput,
errors.CodeInvalidInput,
"invalid time aggregation, should be one of the following: [`latest`, `sum`, `avg`, `min`, `max`, `count`, `rate`, `increase`]",
)
}
return aggregationColumn, nil
}

View File

@@ -29,13 +29,7 @@ func (c *conditionBuilder) conditionFor(
sb *sqlbuilder.SelectBuilder,
) (string, error) {
switch operator {
case qbtypes.FilterOperatorContains,
qbtypes.FilterOperatorNotContains,
qbtypes.FilterOperatorILike,
qbtypes.FilterOperatorNotILike,
qbtypes.FilterOperatorLike,
qbtypes.FilterOperatorNotLike:
if operator.IsStringSearchOperator() {
value = querybuilder.FormatValueForContains(value)
}
@@ -44,6 +38,18 @@ func (c *conditionBuilder) conditionFor(
return "", err
}
// TODO(srikanthccv): use the same data type collision handling when metrics schemas are updated
switch v := value.(type) {
case float64:
tblFieldName = fmt.Sprintf("toFloat64OrNull(%s)", tblFieldName)
case []any:
if len(v) > 0 && (operator == qbtypes.FilterOperatorBetween || operator == qbtypes.FilterOperatorNotBetween) {
if _, ok := v[0].(float64); ok {
tblFieldName = fmt.Sprintf("toFloat64OrNull(%s)", tblFieldName)
}
}
}
switch operator {
case qbtypes.FilterOperatorEqual:
return sb.E(tblFieldName, value), nil

View File

@@ -5,67 +5,27 @@ import (
"fmt"
"log/slog"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/factory"
"github.com/SigNoz/signoz/pkg/flagger"
"github.com/SigNoz/signoz/pkg/querybuilder"
"github.com/SigNoz/signoz/pkg/types/featuretypes"
"github.com/SigNoz/signoz/pkg/types/metrictypes"
qbtypes "github.com/SigNoz/signoz/pkg/types/querybuildertypes/querybuildertypesv5"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
"github.com/SigNoz/signoz/pkg/valuer"
"github.com/huandu/go-sqlbuilder"
"golang.org/x/exp/slices"
)
const (
RateWithoutNegative = `If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))`
IncreaseWithoutNegative = `If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, per_series_value, ((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window)) * (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))`
RateTmpl = `multiIf(row_number() OVER rate_window = 1, nan, (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) / (ts - lagInFrame(ts, 1) OVER rate_window))`
RateWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, IF((%s - lagInFrame(%s, 1, 0) OVER rate_window) < 0, %s / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window), (%s - lagInFrame(%s, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))) AS per_series_value`
IncreaseWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, IF((%s - lagInFrame(%s, 1, 0) OVER rate_window) < 0, %s, ((%s - lagInFrame(%s, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window)) * (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))) AS per_series_value`
OthersMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, %s) AS per_series_value`
IncreaseTmpl = `multiIf(row_number() OVER rate_window = 1, nan, (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0, per_series_value, per_series_value - lagInFrame(per_series_value, 1) OVER rate_window)`
RateWithInterpolation = `
CASE
WHEN row_number() OVER rate_window = 1 THEN
-- First row: try to interpolate using next value
CASE
WHEN leadInFrame(per_series_value, 1) OVER rate_window IS NOT NULL THEN
-- Assume linear growth to next point
(leadInFrame(per_series_value, 1) OVER rate_window - per_series_value) /
(leadInFrame(ts, 1) OVER rate_window - ts)
ELSE
0 -- No next value either, can't interpolate
END
WHEN (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0 THEN
-- Counter reset detected
per_series_value / (ts - lagInFrame(ts, 1) OVER rate_window)
ELSE
-- Normal case: calculate rate
(per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) /
(ts - lagInFrame(ts, 1) OVER rate_window)
END`
RateWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, multiIf(row_number() OVER rate_window = 1, nan, (%s - lagInFrame(%s, 1) OVER rate_window) < 0, %s / (ts - lagInFrame(ts, 1) OVER rate_window), (%s - lagInFrame(%s, 1) OVER rate_window) / (ts - lagInFrame(ts, 1) OVER rate_window))) AS per_series_value`
IncreaseWithInterpolation = `
CASE
WHEN row_number() OVER rate_window = 1 THEN
-- First row: try to interpolate using next value
CASE
WHEN leadInFrame(per_series_value, 1) OVER rate_window IS NOT NULL THEN
-- Calculate the interpolated increase for this interval
((leadInFrame(per_series_value, 1) OVER rate_window - per_series_value) /
(leadInFrame(ts, 1) OVER rate_window - ts)) *
(leadInFrame(ts, 1) OVER rate_window - ts)
ELSE
0 -- No next value either, can't interpolate
END
WHEN (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0 THEN
-- Counter reset detected: the increase is the current value
per_series_value
ELSE
-- Normal case: calculate increase
(per_series_value - lagInFrame(per_series_value, 1) OVER rate_window)
END`
IncreaseWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, multiIf(row_number() OVER rate_window = 1, nan, (%s - lagInFrame(%s, 1) OVER rate_window) < 0, %s, (%s - lagInFrame(%s, 1) OVER rate_window))) AS per_series_value`
OthersMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, %s) AS per_series_value`
)
type MetricQueryStatementBuilder struct {
@@ -147,54 +107,6 @@ func (b *MetricQueryStatementBuilder) Build(
return b.buildPipelineStatement(ctx, start, end, query, keys, variables)
}
// Fastpath (no fingerprint grouping)
// canShortCircuitDelta returns true if we can use the optimized query
// for the given query
// This is used to avoid the group by fingerprint thus improving the performance
// for certain queries
// cases where we can short circuit:
// 1. time aggregation = (rate|increase) and space aggregation = sum
// - rate = sum(value)/step, increase = sum(value) - sum of sums is same as sum of all values
//
// 2. time aggregation = sum and space aggregation = sum
// - sum of sums is same as sum of all values
//
// 3. time aggregation = min and space aggregation = min
// - min of mins is same as min of all values
//
// 4. time aggregation = max and space aggregation = max
// - max of maxs is same as max of all values
//
// 5. special case exphist, there is no need for per series/fingerprint aggregation
// we can directly use the quantilesDDMerge function
//
// all of this is true only for delta metrics
func (b *MetricQueryStatementBuilder) CanShortCircuitDelta(q qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation]) bool {
if q.Aggregations[0].Temporality != metrictypes.Delta {
return false
}
ta := q.Aggregations[0].TimeAggregation
sa := q.Aggregations[0].SpaceAggregation
if (ta == metrictypes.TimeAggregationRate || ta == metrictypes.TimeAggregationIncrease) && sa == metrictypes.SpaceAggregationSum {
return true
}
if ta == metrictypes.TimeAggregationSum && sa == metrictypes.SpaceAggregationSum {
return true
}
if ta == metrictypes.TimeAggregationMin && sa == metrictypes.SpaceAggregationMin {
return true
}
if ta == metrictypes.TimeAggregationMax && sa == metrictypes.SpaceAggregationMax {
return true
}
if q.Aggregations[0].Type == metrictypes.ExpHistogramType && sa.IsPercentile() {
return true
}
return false
}
func (b *MetricQueryStatementBuilder) buildPipelineStatement(
ctx context.Context,
start, end uint64,
@@ -256,10 +168,11 @@ func (b *MetricQueryStatementBuilder) buildPipelineStatement(
return nil, err
}
if b.CanShortCircuitDelta(query) {
if qbtypes.CanShortCircuitDelta(query.Aggregations[0]) {
// spatial_aggregation_cte directly for certain delta queries
frag, args := b.buildTemporalAggDeltaFastPath(start, end, query, timeSeriesCTE, timeSeriesCTEArgs)
if frag != "" {
if frag, args, err := b.buildTemporalAggDeltaFastPath(start, end, query, timeSeriesCTE, timeSeriesCTEArgs); err != nil {
return nil, err
} else if frag != "" {
cteFragments = append(cteFragments, frag)
cteArgs = append(cteArgs, args)
}
@@ -273,8 +186,9 @@ func (b *MetricQueryStatementBuilder) buildPipelineStatement(
}
// spatial_aggregation_cte
frag, args := b.buildSpatialAggregationCTE(ctx, start, end, query, keys)
if frag != "" {
if frag, args, err := b.buildSpatialAggregationCTE(ctx, start, end, query, keys); err != nil {
return nil, err
} else if frag != "" {
cteFragments = append(cteFragments, frag)
cteArgs = append(cteArgs, args)
}
@@ -294,7 +208,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDeltaFastPath(
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
timeSeriesCTE string,
timeSeriesCTEArgs []any,
) (string, []any) {
) (string, []any, error) {
stepSec := int64(query.StepInterval.Seconds())
sb := sqlbuilder.NewSelectBuilder()
@@ -307,11 +221,15 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDeltaFastPath(
sb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
aggCol := AggregationColumnForSamplesTable(
aggCol, err := AggregationColumnForSamplesTable(
start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality,
query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints,
)
if err != nil {
return "", nil, err
}
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
// TODO(srikanthccv): should it be step interval or use [start_time_unix_nano](https://github.com/open-telemetry/opentelemetry-proto/blob/d3fb76d70deb0874692bd0ebe03148580d85f3bb/opentelemetry/proto/metrics/v1/metrics.proto#L400C11-L400C31)?
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
}
@@ -334,7 +252,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDeltaFastPath(
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
q, args := sb.BuildWithFlavor(sqlbuilder.ClickHouse, timeSeriesCTEArgs...)
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args, nil
}
func (b *MetricQueryStatementBuilder) buildTimeSeriesCTE(
@@ -437,8 +355,12 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDelta(
sb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
// TODO(srikanthccv): should it be step interval or use [start_time_unix_nano](https://github.com/open-telemetry/opentelemetry-proto/blob/d3fb76d70deb0874692bd0ebe03148580d85f3bb/opentelemetry/proto/metrics/v1/metrics.proto#L400C11-L400C31)?
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
}
@@ -461,7 +383,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDelta(
}
func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
ctx context.Context,
_ context.Context,
start, end uint64,
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
timeSeriesCTE string,
@@ -479,7 +401,10 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
baseSb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
baseSb.SelectMore(fmt.Sprintf("%s AS per_series_value", aggCol))
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
@@ -496,36 +421,25 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
innerQuery, innerArgs := baseSb.BuildWithFlavor(sqlbuilder.ClickHouse, timeSeriesCTEArgs...)
// ! TODO (balanikaran) Get OrgID via function parameter instead of valuer.GenerateUUID()
interpolationEnabled := b.flagger.BooleanOrEmpty(ctx, flagger.FeatureInterpolationEnabled, featuretypes.NewFlaggerEvaluationContext(valuer.GenerateUUID()))
switch query.Aggregations[0].TimeAggregation {
case metrictypes.TimeAggregationRate:
rateExpr := fmt.Sprintf(RateWithoutNegative, start, start)
if interpolationEnabled {
rateExpr = RateWithInterpolation
}
wrapped := sqlbuilder.NewSelectBuilder()
wrapped.Select("ts")
for _, g := range query.GroupBy {
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", rateExpr))
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", RateTmpl))
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
case metrictypes.TimeAggregationIncrease:
incExpr := fmt.Sprintf(IncreaseWithoutNegative, start, start)
if interpolationEnabled {
incExpr = IncreaseWithInterpolation
}
wrapped := sqlbuilder.NewSelectBuilder()
wrapped.Select("ts")
for _, g := range query.GroupBy {
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", incExpr))
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", IncreaseTmpl))
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
@@ -534,7 +448,6 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
}
}
// because RateInterpolation is not enabled anywhere due to some gaps in the logic wrt cache handling, it hasn't been considered for the multi temporality
func (b *MetricQueryStatementBuilder) buildTemporalAggForMultipleTemporalities(
_ context.Context,
start, end uint64,
@@ -553,18 +466,32 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggForMultipleTemporalities(
sb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
aggForDeltaTemporality := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Delta, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggForCumulativeTemporality := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Cumulative, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggForDeltaTemporality, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Delta, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
aggForCumulativeTemporality, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Cumulative, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
aggForDeltaTemporality = fmt.Sprintf("%s/%d", aggForDeltaTemporality, stepSec)
}
switch query.Aggregations[0].TimeAggregation {
case metrictypes.TimeAggregationRate:
rateExpr := fmt.Sprintf(RateWithoutNegativeMultiTemporality, aggForDeltaTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, start, aggForCumulativeTemporality, aggForCumulativeTemporality, start)
rateExpr := fmt.Sprintf(RateWithoutNegativeMultiTemporality,
aggForDeltaTemporality,
aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality,
aggForCumulativeTemporality, aggForCumulativeTemporality,
)
sb.SelectMore(rateExpr)
case metrictypes.TimeAggregationIncrease:
increaseExpr := fmt.Sprintf(IncreaseWithoutNegativeMultiTemporality, aggForDeltaTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, start, start)
increaseExpr := fmt.Sprintf(IncreaseWithoutNegativeMultiTemporality,
aggForDeltaTemporality,
aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality,
aggForCumulativeTemporality, aggForCumulativeTemporality,
)
sb.SelectMore(increaseExpr)
default:
expr := fmt.Sprintf(OthersMultiTemporality, aggForDeltaTemporality, aggForCumulativeTemporality)
@@ -592,7 +519,14 @@ func (b *MetricQueryStatementBuilder) buildSpatialAggregationCTE(
_ uint64,
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
_ map[string][]*telemetrytypes.TelemetryFieldKey,
) (string, []any) {
) (string, []any, error) {
if query.Aggregations[0].SpaceAggregation.IsZero() {
return "", nil, errors.Newf(
errors.TypeInvalidInput,
errors.CodeInvalidInput,
"invalid space aggregation, should be one of the following: [`sum`, `avg`, `min`, `max`, `count`, `p50`, `p75`, `p90`, `p95`, `p99`]",
)
}
sb := sqlbuilder.NewSelectBuilder()
sb.Select("ts")
@@ -609,7 +543,7 @@ func (b *MetricQueryStatementBuilder) buildSpatialAggregationCTE(
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
q, args := sb.BuildWithFlavor(sqlbuilder.ClickHouse)
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args, nil
}
func (b *MetricQueryStatementBuilder) BuildFinalSelect(
@@ -641,9 +575,7 @@ func (b *MetricQueryStatementBuilder) BuildFinalSelect(
quantile,
))
sb.From("__spatial_aggregation_cte")
for _, g := range query.GroupBy {
sb.GroupBy(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
sb.GroupBy("ts")
if query.Having != nil && query.Having.Expression != "" {
rewriter := querybuilder.NewHavingExpressionRewriter()
@@ -659,6 +591,8 @@ func (b *MetricQueryStatementBuilder) BuildFinalSelect(
sb.Where(rewrittenExpr)
}
}
sb.OrderBy(querybuilder.GroupByKeys(query.GroupBy)...)
sb.OrderBy("ts")
q, a := sb.BuildWithFlavor(sqlbuilder.ClickHouse)
return &qbtypes.Statement{Query: combined + q, Args: append(args, a...)}, nil

View File

@@ -3,6 +3,7 @@ package telemetrymetrics
import (
"time"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/types/metrictypes"
)
@@ -168,7 +169,7 @@ func AggregationColumnForSamplesTable(
temporality metrictypes.Temporality,
timeAggregation metrictypes.TimeAggregation,
tableHints *metrictypes.MetricTableHints,
) string {
) (string, error) {
tableName := WhichSamplesTableToUse(start, end, metricType, timeAggregation, tableHints)
var aggregationColumn string
switch temporality {
@@ -298,5 +299,12 @@ func AggregationColumnForSamplesTable(
}
}
}
return aggregationColumn
if aggregationColumn == "" {
return "", errors.Newf(
errors.TypeInvalidInput,
errors.CodeInvalidInput,
"invalid time aggregation, should be one of the following: [`latest`, `sum`, `avg`, `min`, `max`, `count`, `rate`, `increase`]",
)
}
return aggregationColumn, nil
}

View File

@@ -35,13 +35,7 @@ func (c *conditionBuilder) conditionFor(
sb *sqlbuilder.SelectBuilder,
) (string, error) {
switch operator {
case qbtypes.FilterOperatorContains,
qbtypes.FilterOperatorNotContains,
qbtypes.FilterOperatorILike,
qbtypes.FilterOperatorNotILike,
qbtypes.FilterOperatorLike,
qbtypes.FilterOperatorNotLike:
if operator.IsStringSearchOperator() {
value = querybuilder.FormatValueForContains(value)
}

View File

@@ -152,7 +152,9 @@ func (f FilterOperator) IsStringSearchOperator() bool {
FilterOperatorILike,
FilterOperatorNotILike,
FilterOperatorLike,
FilterOperatorNotLike:
FilterOperatorNotLike,
FilterOperatorRegexp,
FilterOperatorNotRegexp:
return true
default:
return false

View File

@@ -3,6 +3,7 @@ package querybuildertypesv5
import (
"fmt"
"github.com/SigNoz/signoz/pkg/types/metrictypes"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
)
@@ -174,3 +175,54 @@ func (q *QueryBuilderQuery[T]) Normalize() {
}
}
// Fastpath (no fingerprint grouping)
// canShortCircuitDelta returns true if we can use the optimized query
// for the given query
// This is used to avoid the group by fingerprint thus improving the performance
// for certain queries
// cases where we can short circuit:
// 1. time aggregation = (rate|increase) and space aggregation = sum
// - rate = sum(value)/step, increase = sum(value) - sum of sums is same as sum of all values
//
// 2. time aggregation = sum and space aggregation = sum
// - sum of sums is same as sum of all values
//
// 3. time aggregation = min and space aggregation = min
// - min of mins is same as min of all values
//
// 4. time aggregation = max and space aggregation = max
// - max of maxs is same as max of all values
//
// 5. special case exphist, there is no need for per series/fingerprint aggregation
// we can directly use the quantilesDDMerge function
//
// all of this is true only for delta metrics
func CanShortCircuitDelta(metricAgg MetricAggregation) bool {
if metricAgg.Temporality != metrictypes.Delta {
return false
}
ta := metricAgg.TimeAggregation
sa := metricAgg.SpaceAggregation
if (ta == metrictypes.TimeAggregationRate || ta == metrictypes.TimeAggregationIncrease) &&
sa == metrictypes.SpaceAggregationSum {
return true
}
if ta == metrictypes.TimeAggregationSum && sa == metrictypes.SpaceAggregationSum {
return true
}
if ta == metrictypes.TimeAggregationMin && sa == metrictypes.SpaceAggregationMin {
return true
}
if ta == metrictypes.TimeAggregationMax && sa == metrictypes.SpaceAggregationMax {
return true
}
if metricAgg.Type == metrictypes.ExpHistogramType && sa.IsPercentile() {
return true
}
return false
}

View File

@@ -12,6 +12,7 @@ import (
var (
ErrColumnNotFound = errors.Newf(errors.TypeNotFound, errors.CodeNotFound, "field not found")
ErrBetweenValues = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "(not) between operator requires two values")
ErrBetweenValuesType = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "(not) between operator requires two values of the number type")
ErrInValues = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "(not) in operator requires a list of values")
ErrUnsupportedOperator = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "unsupported operator")
)

View File

@@ -179,14 +179,6 @@ func (q *QueryBuilderQuery[T]) validateAggregations() error {
aggId,
)
}
// Validate metric-specific aggregations
if err := validateMetricAggregation(v); err != nil {
aggId := fmt.Sprintf("aggregation #%d", i+1)
if q.Name != "" {
aggId = fmt.Sprintf("aggregation #%d in query '%s'", i+1, q.Name)
}
return wrapValidationError(err, aggId, "invalid metric %s: %s")
}
case TraceAggregation:
if v.Expression == "" {
aggId := fmt.Sprintf("aggregation #%d", i+1)
@@ -803,85 +795,3 @@ func validateQueryEnvelope(envelope QueryEnvelope, requestType RequestType) erro
)
}
}
// validateMetricAggregation validates metric-specific aggregation parameters
func validateMetricAggregation(agg MetricAggregation) error {
// we can't decide anything here without known temporality
if agg.Temporality == metrictypes.Unknown {
return nil
}
// Validate that rate/increase are only used with appropriate temporalities
if agg.TimeAggregation == metrictypes.TimeAggregationRate || agg.TimeAggregation == metrictypes.TimeAggregationIncrease {
// For gauge metrics (Unspecified temporality), rate/increase doesn't make sense
if agg.Temporality == metrictypes.Unspecified {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"rate/increase aggregation cannot be used with gauge metrics (unspecified temporality)",
)
}
}
// Validate percentile aggregations are only used with histogram types
if agg.SpaceAggregation.IsPercentile() {
if agg.Type != metrictypes.HistogramType && agg.Type != metrictypes.ExpHistogramType && agg.Type != metrictypes.SummaryType {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"percentile aggregation can only be used with histogram or summary metric types",
)
}
}
// Validate time aggregation values
validTimeAggregations := []metrictypes.TimeAggregation{
metrictypes.TimeAggregationUnspecified,
metrictypes.TimeAggregationLatest,
metrictypes.TimeAggregationSum,
metrictypes.TimeAggregationAvg,
metrictypes.TimeAggregationMin,
metrictypes.TimeAggregationMax,
metrictypes.TimeAggregationCount,
metrictypes.TimeAggregationCountDistinct,
metrictypes.TimeAggregationRate,
metrictypes.TimeAggregationIncrease,
}
validTimeAgg := slices.Contains(validTimeAggregations, agg.TimeAggregation)
if !validTimeAgg {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"invalid time aggregation: %s",
agg.TimeAggregation.StringValue(),
).WithAdditional(
"Valid time aggregations: latest, sum, avg, min, max, count, count_distinct, rate, increase",
)
}
// Validate space aggregation values
validSpaceAggregations := []metrictypes.SpaceAggregation{
metrictypes.SpaceAggregationUnspecified,
metrictypes.SpaceAggregationSum,
metrictypes.SpaceAggregationAvg,
metrictypes.SpaceAggregationMin,
metrictypes.SpaceAggregationMax,
metrictypes.SpaceAggregationCount,
metrictypes.SpaceAggregationPercentile50,
metrictypes.SpaceAggregationPercentile75,
metrictypes.SpaceAggregationPercentile90,
metrictypes.SpaceAggregationPercentile95,
metrictypes.SpaceAggregationPercentile99,
}
validSpaceAgg := slices.Contains(validSpaceAggregations, agg.SpaceAggregation)
if !validSpaceAgg {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"invalid space aggregation: %s",
agg.SpaceAggregation.StringValue(),
).WithAdditional(
"Valid space aggregations: sum, avg, min, max, count, p50, p75, p90, p95, p99",
)
}
return nil
}

View File

@@ -14,10 +14,10 @@ from fixtures.alertutils import (
from fixtures.logger import setup_logger
from fixtures.utils import get_testdata_file_path
# test cases for match type and compare operators have wait time of 30 seconds to verify the alert expectation.
# we've poistioned the alert data to fire the alert on first eval of rule manager, the eval frequency
# for most alert rules are set of 15s so considering this delay plus some delay from alert manager's
# group_wait and group_interval, even in worst case most alerts should be triggered in about 30 seconds
# Alert test cases use a 30-second wait time to verify expected alert firing.
# Alert data is set up to trigger on the first rule manager evaluation.
# With a 15-second eval frequency for most rules, plus alertmanager's
# group_wait and group_interval delays, alerts should fire well within 30 seconds.
TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
types.AlertTestCase(
name="test_threshold_above_at_least_once",
@@ -25,6 +25,7 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
alert_data=[
types.AlertData(
type="metrics",
# active requests dummy data
data_path="alerts/test_scenarios/threshold_above_at_least_once/alert_data.jsonl",
),
],
@@ -115,30 +116,28 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
],
),
),
# TODO: @abhishekhugetech enable the test for matchType last, pylint: disable=W0511
# after the [issue](https://github.com/SigNoz/engineering-pod/issues/3801) with matchType last is fixed
# types.AlertTestCase(
# name="test_threshold_above_last",
# rule_path="alerts/test_scenarios/threshold_above_last/rule.json",
# alert_data=[
# types.AlertData(
# type="metrics",
# data_path="alerts/test_scenarios/threshold_above_last/alert_data.jsonl",
# ),
# ],
# alert_expectation=types.AlertExpectation(
# should_alert=True,
# wait_time_seconds=30,
# expected_alerts=[
# types.FiringAlert(
# labels={
# "alertname": "threshold_above_last",
# "threshold.name": "critical",
# }
# ),
# ],
# ),
# ),
types.AlertTestCase(
name="test_threshold_above_last",
rule_path="alerts/test_scenarios/threshold_above_last/rule.json",
alert_data=[
types.AlertData(
type="metrics",
data_path="alerts/test_scenarios/threshold_above_last/alert_data.jsonl",
),
],
alert_expectation=types.AlertExpectation(
should_alert=True,
wait_time_seconds=30,
expected_alerts=[
types.FiringAlert(
labels={
"alertname": "threshold_above_last",
"threshold.name": "critical",
}
),
],
),
),
types.AlertTestCase(
name="test_threshold_below_at_least_once",
rule_path="alerts/test_scenarios/threshold_below_at_least_once/rule.json",
@@ -189,6 +188,7 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
alert_data=[
types.AlertData(
type="metrics",
# one rate ~5 + rest 0.01 so it remains in total below 10
data_path="alerts/test_scenarios/threshold_below_in_total/alert_data.jsonl",
),
],
@@ -227,30 +227,28 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
],
),
),
# TODO: @abhishekhugetech enable the test for matchType last,
# after the [issue](https://github.com/SigNoz/engineering-pod/issues/3801) with matchType last is fixed, pylint: disable=W0511
# types.AlertTestCase(
# name="test_threshold_below_last",
# rule_path="alerts/test_scenarios/threshold_below_last/rule.json",
# alert_data=[
# types.AlertData(
# type="metrics",
# data_path="alerts/test_scenarios/threshold_below_last/alert_data.jsonl",
# ),
# ],
# alert_expectation=types.AlertExpectation(
# should_alert=True,
# wait_time_seconds=30,
# expected_alerts=[
# types.FiringAlert(
# labels={
# "alertname": "threshold_below_last",
# "threshold.name": "critical",
# }
# ),
# ],
# ),
# ),
types.AlertTestCase(
name="test_threshold_below_last",
rule_path="alerts/test_scenarios/threshold_below_last/rule.json",
alert_data=[
types.AlertData(
type="metrics",
data_path="alerts/test_scenarios/threshold_below_last/alert_data.jsonl",
),
],
alert_expectation=types.AlertExpectation(
should_alert=True,
wait_time_seconds=30,
expected_alerts=[
types.FiringAlert(
labels={
"alertname": "threshold_below_last",
"threshold.name": "critical",
}
),
],
),
),
types.AlertTestCase(
name="test_threshold_equal_to_at_least_once",
rule_path="alerts/test_scenarios/threshold_equal_to_at_least_once/rule.json",
@@ -339,30 +337,28 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
],
),
),
# TODO: @abhishekhugetech enable the test for matchType last,
# after the [issue](https://github.com/SigNoz/engineering-pod/issues/3801) with matchType last is fixed, pylint: disable=W0511
# types.AlertTestCase(
# name="test_threshold_equal_to_last",
# rule_path="alerts/test_scenarios/threshold_equal_to_last/rule.json",
# alert_data=[
# types.AlertData(
# type="metrics",
# data_path="alerts/test_scenarios/threshold_equal_to_last/alert_data.jsonl",
# ),
# ],
# alert_expectation=types.AlertExpectation(
# should_alert=True,
# wait_time_seconds=30,
# expected_alerts=[
# types.FiringAlert(
# labels={
# "alertname": "threshold_equal_to_last",
# "threshold.name": "critical",
# }
# ),
# ],
# ),
# ),
types.AlertTestCase(
name="test_threshold_equal_to_last",
rule_path="alerts/test_scenarios/threshold_equal_to_last/rule.json",
alert_data=[
types.AlertData(
type="metrics",
data_path="alerts/test_scenarios/threshold_equal_to_last/alert_data.jsonl",
),
],
alert_expectation=types.AlertExpectation(
should_alert=True,
wait_time_seconds=30,
expected_alerts=[
types.FiringAlert(
labels={
"alertname": "threshold_equal_to_last",
"threshold.name": "critical",
}
),
],
),
),
types.AlertTestCase(
name="test_threshold_not_equal_to_at_least_once",
rule_path="alerts/test_scenarios/threshold_not_equal_to_at_least_once/rule.json",
@@ -451,30 +447,28 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
],
),
),
# TODO: @abhishekhugetech enable the test for matchType last,
# after the [issue](https://github.com/SigNoz/engineering-pod/issues/3801) with matchType last is fixed, pylint: disable=W0511
# types.AlertTestCase(
# name="test_threshold_not_equal_to_last",
# rule_path="alerts/test_scenarios/threshold_not_equal_to_last/rule.json",
# alert_data=[
# types.AlertData(
# type="metrics",
# data_path="alerts/test_scenarios/threshold_not_equal_to_last/alert_data.jsonl",
# ),
# ],
# alert_expectation=types.AlertExpectation(
# should_alert=True,
# wait_time_seconds=30,
# expected_alerts=[
# types.FiringAlert(
# labels={
# "alertname": "threshold_not_equal_to_last",
# "threshold.name": "critical",
# }
# ),
# ],
# ),
# ),
types.AlertTestCase(
name="test_threshold_not_equal_to_last",
rule_path="alerts/test_scenarios/threshold_not_equal_to_last/rule.json",
alert_data=[
types.AlertData(
type="metrics",
data_path="alerts/test_scenarios/threshold_not_equal_to_last/alert_data.jsonl",
),
],
alert_expectation=types.AlertExpectation(
should_alert=True,
wait_time_seconds=30,
expected_alerts=[
types.FiringAlert(
labels={
"alertname": "threshold_not_equal_to_last",
"threshold.name": "critical",
}
),
],
),
),
]
# test cases unit conversion

File diff suppressed because it is too large Load Diff

View File

@@ -54,17 +54,17 @@ def test_rate_with_steady_values_and_reset(
data = response.json()
result_values = sorted(get_series_values(data, "A"), key=lambda x: x["timestamp"])
assert len(result_values) >= 59
assert len(result_values) >= 58
# the counter reset happened at 31st minute
assert (
result_values[30]["value"] == 0.0167
result_values[29]["value"] == 0.0167
) # i.e 2/120 i.e 29th to 31st minute changes
assert (
result_values[31]["value"] == 0.133
result_values[30]["value"] == 0.133
) # i.e 10/60 i.e 31st to 32nd minute changes
count_of_steady_rate = sum(1 for v in result_values if v["value"] == 0.0833)
assert (
count_of_steady_rate >= 56
count_of_steady_rate >= 55
) # 59 - (1 reset + 1 high rate + 1 at the beginning)
# All rates should be non-negative (stale periods = 0 rate)
for v in result_values:

View File

@@ -72,16 +72,17 @@ def test_with_steady_values_and_reset(
data = response.json()
result_values = sorted(get_series_values(data, "A"), key=lambda x: x["timestamp"])
assert len(result_values) >= 59
assert len(result_values) >= 58
# the counter reset happened at 31st minute
assert result_values[30]["value"] == expected_value_at_31st_minute
assert result_values[31]["value"] == expected_value_at_32nd_minute
# we skip the rate value for the first data point without previous value
assert result_values[29]["value"] == expected_value_at_31st_minute
assert result_values[30]["value"] == expected_value_at_32nd_minute
assert (
result_values[39]["value"] == steady_value
) # 39th minute is when cumulative shifts to delta
result_values[38]["value"] == steady_value
) # 38th minute is when cumulative shifts to delta
count_of_steady_rate = sum(1 for v in result_values if v["value"] == steady_value)
assert (
count_of_steady_rate >= 56
count_of_steady_rate >= 55
) # 59 - (1 reset + 1 high rate + 1 at the beginning)
# All rates should be non-negative (stale periods = 0 rate)
for v in result_values:
@@ -316,12 +317,12 @@ def test_for_service_with_switch(
data = response.json()
result_values = sorted(get_series_values(data, "A"), key=lambda x: x["timestamp"])
assert len(result_values) >= 60
assert result_values[30]["value"] == expected_value_at_30th_minute # 0.183
assert result_values[31]["value"] == expected_value_at_31st_minute # 0.183
assert result_values[38]["value"] == value_at_switch # 0.25
assert len(result_values) >= 59
assert result_values[29]["value"] == expected_value_at_30th_minute # 0.183
assert result_values[30]["value"] == expected_value_at_31st_minute # 0.183
assert result_values[37]["value"] == value_at_switch # 0.25
assert (
result_values[39]["value"] == value_at_switch # 0.25
result_values[38]["value"] == value_at_switch # 0.25
) # 39th minute is when cumulative shifts to delta
# All rates should be non-negative (stale periods = 0 rate)
for v in result_values:

View File

@@ -1,12 +1,12 @@
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:01:00+00:00","value":1,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:02:00+00:00","value":2,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:03:00+00:00","value":3,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:04:00+00:00","value":4,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:05:00+00:00","value":19,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:06:00+00:00","value":20,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:07:00+00:00","value":35,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:08:00+00:00","value":36,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:09:00+00:00","value":37,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:10:00+00:00","value":38,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:11:00+00:00","value":39,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:12:00+00:00","value":40,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:01:00+00:00","value":1,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:02:00+00:00","value":2,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:03:00+00:00","value":4,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:04:00+00:00","value":4,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:05:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:06:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:07:00+00:00","value":36,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:08:00+00:00","value":25,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:09:00+00:00","value":37,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:10:00+00:00","value":35,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:11:00+00:00","value":39,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:12:00+00:00","value":25,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}

View File

@@ -25,7 +25,7 @@
"type": "clickhouse_sql",
"spec": {
"name": "A",
"query": "WITH __temporal_aggregation_cte AS (\n SELECT \n fingerprint, \n toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(60)) AS ts, \n avg(value) AS per_series_value \n FROM signoz_metrics.distributed_samples_v4 AS points \n INNER JOIN (\n SELECT fingerprint \n FROM signoz_metrics.time_series_v4 \n WHERE metric_name IN ('request_total_threshold_above_at_least_once') \n AND LOWER(temporality) LIKE LOWER('cumulative') \n AND __normalized = false \n GROUP BY fingerprint\n ) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint \n WHERE metric_name IN ('request_total_threshold_above_at_least_once') \n AND unix_milli >= {{.start_timestamp_ms}} \n AND unix_milli < {{.end_timestamp_ms}} \n GROUP BY fingerprint, ts \n ORDER BY fingerprint, ts\n), \n__spatial_aggregation_cte AS (\n SELECT \n ts, \n avg(per_series_value) AS value \n FROM __temporal_aggregation_cte \n WHERE isNaN(per_series_value) = 0 \n GROUP BY ts\n) \nSELECT * FROM __spatial_aggregation_cte \nORDER BY ts"
"query": "WITH __temporal_aggregation_cte AS (\n SELECT \n fingerprint, \n toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(60)) AS ts, \n avg(value) AS per_series_value \n FROM signoz_metrics.distributed_samples_v4 AS points \n INNER JOIN (\n SELECT fingerprint \n FROM signoz_metrics.time_series_v4 \n WHERE metric_name IN ('request_total_threshold_above_at_least_once') \n AND LOWER(temporality) LIKE LOWER('cumulative') \n AND __normalized = false \n GROUP BY fingerprint\n ) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint \n WHERE metric_name IN ('request_total_threshold_above_at_least_once') \n AND unix_milli >= $start_timestamp_ms \n AND unix_milli < $end_timestamp_ms \n GROUP BY fingerprint, ts \n ORDER BY fingerprint, ts\n), \n__spatial_aggregation_cte AS (\n SELECT \n ts, \n sum(per_series_value) AS value \n FROM __temporal_aggregation_cte \n WHERE isNaN(per_series_value) = 0 \n GROUP BY ts\n) \nSELECT * FROM __spatial_aggregation_cte \nORDER BY ts"
}
}
]

View File

@@ -1,12 +1,12 @@
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":5,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":20,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":31,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":46,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":58,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":71,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":76,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":81,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":86,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":91,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":5,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":12,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":31,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":23,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":58,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":71,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":45,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":81,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":86,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":91,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}

View File

@@ -1,12 +1,12 @@
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":5,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":20,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":30,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":40,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":50,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":55,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":60,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":65,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":70,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":75,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":5,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":20,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":45,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":60,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":65,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":34,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":75,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}

View File

@@ -1,12 +1,12 @@
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":524288,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":1048576,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":1572864,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":2097152,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":3770016,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":5642880,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":10515744,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":11038632,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":11561520,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":12084408,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":12607296,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":13130184,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":524288,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":1048576,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":1572864,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":2097152,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":3770016,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":5642880,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":10515744,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":11038632,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":11561520,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":12084408,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":12607296,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":13130184,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}