mirror of
https://github.com/SigNoz/signoz.git
synced 2026-02-14 13:22:02 +00:00
Compare commits
1 Commits
feat/bar-p
...
fix-issues
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e3c04b378a |
@@ -285,7 +285,6 @@ flagger:
|
||||
config:
|
||||
boolean:
|
||||
use_span_metrics: true
|
||||
interpolation_enabled: false
|
||||
kafka_span_eval: false
|
||||
string:
|
||||
float:
|
||||
|
||||
@@ -3,9 +3,8 @@ package flagger
|
||||
import "github.com/SigNoz/signoz/pkg/types/featuretypes"
|
||||
|
||||
var (
|
||||
FeatureUseSpanMetrics = featuretypes.MustNewName("use_span_metrics")
|
||||
FeatureInterpolationEnabled = featuretypes.MustNewName("interpolation_enabled")
|
||||
FeatureKafkaSpanEval = featuretypes.MustNewName("kafka_span_eval")
|
||||
FeatureUseSpanMetrics = featuretypes.MustNewName("use_span_metrics")
|
||||
FeatureKafkaSpanEval = featuretypes.MustNewName("kafka_span_eval")
|
||||
)
|
||||
|
||||
func MustNewRegistry() featuretypes.Registry {
|
||||
@@ -18,14 +17,6 @@ func MustNewRegistry() featuretypes.Registry {
|
||||
DefaultVariant: featuretypes.MustNewName("disabled"),
|
||||
Variants: featuretypes.NewBooleanVariants(),
|
||||
},
|
||||
&featuretypes.Feature{
|
||||
Name: FeatureInterpolationEnabled,
|
||||
Kind: featuretypes.KindBoolean,
|
||||
Stage: featuretypes.StageExperimental,
|
||||
Description: "Controls whether to enable interpolation",
|
||||
DefaultVariant: featuretypes.MustNewName("disabled"),
|
||||
Variants: featuretypes.NewBooleanVariants(),
|
||||
},
|
||||
&featuretypes.Feature{
|
||||
Name: FeatureKafkaSpanEval,
|
||||
Kind: featuretypes.KindBoolean,
|
||||
|
||||
@@ -483,6 +483,22 @@ func (v *filterExpressionVisitor) VisitComparison(ctx *grammar.ComparisonContext
|
||||
value1 := v.Visit(values[0])
|
||||
value2 := v.Visit(values[1])
|
||||
|
||||
switch value1.(type) {
|
||||
case float64:
|
||||
if _, ok := value2.(float64); !ok {
|
||||
v.errors = append(v.errors, fmt.Sprintf("value type mismatch for key %s: expected number for both operands", keys[0].Name))
|
||||
return ""
|
||||
}
|
||||
case string:
|
||||
if _, ok := value2.(string); !ok {
|
||||
v.errors = append(v.errors, fmt.Sprintf("value type mismatch for key %s: expected string for both operands", keys[0].Name))
|
||||
return ""
|
||||
}
|
||||
default:
|
||||
v.errors = append(v.errors, fmt.Sprintf("value type mismatch for key %s: operands must be number or string", keys[0].Name))
|
||||
return ""
|
||||
}
|
||||
|
||||
var conds []string
|
||||
for _, key := range keys {
|
||||
condition, err := v.conditionBuilder.ConditionFor(context.Background(), key, op, []any{value1, value2}, v.builder, v.startNs, v.endNs)
|
||||
@@ -855,7 +871,7 @@ func (v *filterExpressionVisitor) VisitKey(ctx *grammar.KeyContext) any {
|
||||
// 1. either user meant key ( this is already handled above in fieldKeysForName )
|
||||
// 2. or user meant `attribute.key` we look up in the map for all possible field keys with name 'attribute.key'
|
||||
|
||||
// Note:
|
||||
// Note:
|
||||
// If user only wants to search `attribute.key`, then they have to use `attribute.attribute.key`
|
||||
// If user only wants to search `key`, then they have to use `key`
|
||||
// If user wants to search both, they can use `attribute.key` and we will resolve the ambiguity
|
||||
|
||||
@@ -375,13 +375,6 @@ func mergeAndEnsureBackwardCompatibility(ctx context.Context, logger *slog.Logge
|
||||
config.Flagger.Config.Boolean[flagger.FeatureKafkaSpanEval.String()] = os.Getenv("KAFKA_SPAN_EVAL") == "true"
|
||||
}
|
||||
|
||||
if os.Getenv("INTERPOLATION_ENABLED") != "" {
|
||||
logger.WarnContext(ctx, "[Deprecated] env INTERPOLATION_ENABLED is deprecated and scheduled for removal. Please use SIGNOZ_FLAGGER_CONFIG_BOOLEAN_INTERPOLATION__ENABLED instead.")
|
||||
if config.Flagger.Config.Boolean == nil {
|
||||
config.Flagger.Config.Boolean = make(map[string]bool)
|
||||
}
|
||||
config.Flagger.Config.Boolean[flagger.FeatureInterpolationEnabled.String()] = os.Getenv("INTERPOLATION_ENABLED") == "true"
|
||||
}
|
||||
}
|
||||
|
||||
func (config Config) Collect(_ context.Context, _ valuer.UUID) (map[string]any, error) {
|
||||
|
||||
@@ -5,6 +5,7 @@ import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
|
||||
"github.com/SigNoz/signoz/pkg/errors"
|
||||
"github.com/SigNoz/signoz/pkg/factory"
|
||||
"github.com/SigNoz/signoz/pkg/querybuilder"
|
||||
"github.com/SigNoz/signoz/pkg/telemetrymetrics"
|
||||
@@ -91,8 +92,9 @@ func (b *meterQueryStatementBuilder) buildPipelineStatement(
|
||||
}
|
||||
|
||||
// spatial_aggregation_cte
|
||||
frag, args := b.buildSpatialAggregationCTE(ctx, start, end, query, keys)
|
||||
if frag != "" {
|
||||
if frag, args, err := b.buildSpatialAggregationCTE(ctx, start, end, query, keys); err != nil {
|
||||
return nil, err
|
||||
} else if frag != "" {
|
||||
cteFragments = append(cteFragments, frag)
|
||||
cteArgs = append(cteArgs, args)
|
||||
}
|
||||
@@ -128,7 +130,10 @@ func (b *meterQueryStatementBuilder) buildTemporalAggDeltaFastPath(
|
||||
}
|
||||
|
||||
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
if err != nil {
|
||||
return "", []any{}, err
|
||||
}
|
||||
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
|
||||
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
|
||||
}
|
||||
@@ -208,8 +213,11 @@ func (b *meterQueryStatementBuilder) buildTemporalAggDelta(
|
||||
}
|
||||
|
||||
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality,
|
||||
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality,
|
||||
query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
if err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
|
||||
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
|
||||
}
|
||||
@@ -278,7 +286,10 @@ func (b *meterQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
|
||||
}
|
||||
|
||||
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
if err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
baseSb.SelectMore(fmt.Sprintf("%s AS per_series_value", aggCol))
|
||||
|
||||
baseSb.From(fmt.Sprintf("%s.%s AS points", DBName, tbl))
|
||||
@@ -315,25 +326,23 @@ func (b *meterQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
|
||||
|
||||
switch query.Aggregations[0].TimeAggregation {
|
||||
case metrictypes.TimeAggregationRate:
|
||||
rateExpr := fmt.Sprintf(telemetrymetrics.RateWithoutNegative, start, start)
|
||||
wrapped := sqlbuilder.NewSelectBuilder()
|
||||
wrapped.Select("ts")
|
||||
for _, g := range query.GroupBy {
|
||||
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
|
||||
}
|
||||
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", rateExpr))
|
||||
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", telemetrymetrics.RateTmpl))
|
||||
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
|
||||
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
|
||||
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
|
||||
|
||||
case metrictypes.TimeAggregationIncrease:
|
||||
incExpr := fmt.Sprintf(telemetrymetrics.IncreaseWithoutNegative, start, start)
|
||||
wrapped := sqlbuilder.NewSelectBuilder()
|
||||
wrapped.Select("ts")
|
||||
for _, g := range query.GroupBy {
|
||||
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
|
||||
}
|
||||
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", incExpr))
|
||||
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", telemetrymetrics.IncreaseTmpl))
|
||||
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
|
||||
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
|
||||
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
|
||||
@@ -348,7 +357,15 @@ func (b *meterQueryStatementBuilder) buildSpatialAggregationCTE(
|
||||
_ uint64,
|
||||
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
|
||||
_ map[string][]*telemetrytypes.TelemetryFieldKey,
|
||||
) (string, []any) {
|
||||
) (string, []any, error) {
|
||||
|
||||
if query.Aggregations[0].SpaceAggregation.IsZero() {
|
||||
return "", []any{}, errors.Newf(
|
||||
errors.TypeInvalidInput,
|
||||
errors.CodeInvalidInput,
|
||||
"invalid space aggregation, should be one of the following: [`sum`, `avg`, `min`, `max`, `count`]",
|
||||
)
|
||||
}
|
||||
sb := sqlbuilder.NewSelectBuilder()
|
||||
|
||||
sb.Select("ts")
|
||||
@@ -365,5 +382,5 @@ func (b *meterQueryStatementBuilder) buildSpatialAggregationCTE(
|
||||
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
|
||||
|
||||
q, args := sb.BuildWithFlavor(sqlbuilder.ClickHouse)
|
||||
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args
|
||||
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args, nil
|
||||
}
|
||||
|
||||
@@ -3,6 +3,7 @@ package telemetrymeter
|
||||
import (
|
||||
"time"
|
||||
|
||||
"github.com/SigNoz/signoz/pkg/errors"
|
||||
"github.com/SigNoz/signoz/pkg/types/metrictypes"
|
||||
)
|
||||
|
||||
@@ -63,7 +64,7 @@ func AggregationColumnForSamplesTable(
|
||||
temporality metrictypes.Temporality,
|
||||
timeAggregation metrictypes.TimeAggregation,
|
||||
tableHints *metrictypes.MetricTableHints,
|
||||
) string {
|
||||
) (string, error) {
|
||||
tableName := WhichSamplesTableToUse(start, end, metricType, timeAggregation, tableHints)
|
||||
var aggregationColumn string
|
||||
switch temporality {
|
||||
@@ -190,5 +191,13 @@ func AggregationColumnForSamplesTable(
|
||||
}
|
||||
|
||||
}
|
||||
return aggregationColumn
|
||||
|
||||
if aggregationColumn == "" {
|
||||
return "", errors.Newf(
|
||||
errors.TypeInvalidInput,
|
||||
errors.CodeInvalidInput,
|
||||
"invalid time aggregation, should be one of the following: [`latest`, `sum`, `avg`, `min`, `max`, `count`, `rate`, `increase`]",
|
||||
)
|
||||
}
|
||||
return aggregationColumn, nil
|
||||
}
|
||||
|
||||
@@ -29,13 +29,7 @@ func (c *conditionBuilder) conditionFor(
|
||||
sb *sqlbuilder.SelectBuilder,
|
||||
) (string, error) {
|
||||
|
||||
switch operator {
|
||||
case qbtypes.FilterOperatorContains,
|
||||
qbtypes.FilterOperatorNotContains,
|
||||
qbtypes.FilterOperatorILike,
|
||||
qbtypes.FilterOperatorNotILike,
|
||||
qbtypes.FilterOperatorLike,
|
||||
qbtypes.FilterOperatorNotLike:
|
||||
if operator.IsStringSearchOperator() {
|
||||
value = querybuilder.FormatValueForContains(value)
|
||||
}
|
||||
|
||||
@@ -44,6 +38,18 @@ func (c *conditionBuilder) conditionFor(
|
||||
return "", err
|
||||
}
|
||||
|
||||
// todo(srikanthccv): use the same data type collision handling when metrics schemas are updated
|
||||
switch v := value.(type) {
|
||||
case float64:
|
||||
tblFieldName = fmt.Sprintf("toFloat64OrNull(%s)", tblFieldName)
|
||||
case []any:
|
||||
if len(v) > 0 && (operator == qbtypes.FilterOperatorBetween || operator == qbtypes.FilterOperatorNotBetween) {
|
||||
if _, ok := v[0].(float64); ok {
|
||||
tblFieldName = fmt.Sprintf("toFloat64OrNull(%s)", tblFieldName)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
switch operator {
|
||||
case qbtypes.FilterOperatorEqual:
|
||||
return sb.E(tblFieldName, value), nil
|
||||
|
||||
@@ -5,67 +5,27 @@ import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
|
||||
"github.com/SigNoz/signoz/pkg/errors"
|
||||
"github.com/SigNoz/signoz/pkg/factory"
|
||||
"github.com/SigNoz/signoz/pkg/flagger"
|
||||
"github.com/SigNoz/signoz/pkg/querybuilder"
|
||||
"github.com/SigNoz/signoz/pkg/types/featuretypes"
|
||||
"github.com/SigNoz/signoz/pkg/types/metrictypes"
|
||||
qbtypes "github.com/SigNoz/signoz/pkg/types/querybuildertypes/querybuildertypesv5"
|
||||
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
|
||||
"github.com/SigNoz/signoz/pkg/valuer"
|
||||
"github.com/huandu/go-sqlbuilder"
|
||||
"golang.org/x/exp/slices"
|
||||
)
|
||||
|
||||
const (
|
||||
RateWithoutNegative = `If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))`
|
||||
IncreaseWithoutNegative = `If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, per_series_value, ((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window)) * (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))`
|
||||
RateTmpl = `multiIf(row_number() OVER rate_window = 1, nan, (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) / (ts - lagInFrame(ts, 1) OVER rate_window))`
|
||||
|
||||
RateWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, IF((%s - lagInFrame(%s, 1, 0) OVER rate_window) < 0, %s / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window), (%s - lagInFrame(%s, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))) AS per_series_value`
|
||||
IncreaseWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, IF((%s - lagInFrame(%s, 1, 0) OVER rate_window) < 0, %s, ((%s - lagInFrame(%s, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window)) * (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))) AS per_series_value`
|
||||
OthersMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, %s) AS per_series_value`
|
||||
IncreaseTmpl = `multiIf(row_number() OVER rate_window = 1, nan, (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0, per_series_value, per_series_value - lagInFrame(per_series_value, 1) OVER rate_window)`
|
||||
|
||||
RateWithInterpolation = `
|
||||
CASE
|
||||
WHEN row_number() OVER rate_window = 1 THEN
|
||||
-- First row: try to interpolate using next value
|
||||
CASE
|
||||
WHEN leadInFrame(per_series_value, 1) OVER rate_window IS NOT NULL THEN
|
||||
-- Assume linear growth to next point
|
||||
(leadInFrame(per_series_value, 1) OVER rate_window - per_series_value) /
|
||||
(leadInFrame(ts, 1) OVER rate_window - ts)
|
||||
ELSE
|
||||
0 -- No next value either, can't interpolate
|
||||
END
|
||||
WHEN (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0 THEN
|
||||
-- Counter reset detected
|
||||
per_series_value / (ts - lagInFrame(ts, 1) OVER rate_window)
|
||||
ELSE
|
||||
-- Normal case: calculate rate
|
||||
(per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) /
|
||||
(ts - lagInFrame(ts, 1) OVER rate_window)
|
||||
END`
|
||||
RateWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, multiIf(row_number() OVER rate_window = 1, nan, (%s - lagInFrame(%s, 1) OVER rate_window) < 0, %s / (ts - lagInFrame(ts, 1) OVER rate_window), (%s - lagInFrame(%s, 1) OVER rate_window) / (ts - lagInFrame(ts, 1) OVER rate_window))) AS per_series_value`
|
||||
|
||||
IncreaseWithInterpolation = `
|
||||
CASE
|
||||
WHEN row_number() OVER rate_window = 1 THEN
|
||||
-- First row: try to interpolate using next value
|
||||
CASE
|
||||
WHEN leadInFrame(per_series_value, 1) OVER rate_window IS NOT NULL THEN
|
||||
-- Calculate the interpolated increase for this interval
|
||||
((leadInFrame(per_series_value, 1) OVER rate_window - per_series_value) /
|
||||
(leadInFrame(ts, 1) OVER rate_window - ts)) *
|
||||
(leadInFrame(ts, 1) OVER rate_window - ts)
|
||||
ELSE
|
||||
0 -- No next value either, can't interpolate
|
||||
END
|
||||
WHEN (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0 THEN
|
||||
-- Counter reset detected: the increase is the current value
|
||||
per_series_value
|
||||
ELSE
|
||||
-- Normal case: calculate increase
|
||||
(per_series_value - lagInFrame(per_series_value, 1) OVER rate_window)
|
||||
END`
|
||||
IncreaseWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, multiIf(row_number() OVER rate_window = 1, nan, (%s - lagInFrame(%s, 1) OVER rate_window) < 0, %s, (%s - lagInFrame(%s, 1) OVER rate_window))) AS per_series_value`
|
||||
|
||||
OthersMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, %s) AS per_series_value`
|
||||
)
|
||||
|
||||
type MetricQueryStatementBuilder struct {
|
||||
@@ -258,8 +218,9 @@ func (b *MetricQueryStatementBuilder) buildPipelineStatement(
|
||||
|
||||
if b.CanShortCircuitDelta(query) {
|
||||
// spatial_aggregation_cte directly for certain delta queries
|
||||
frag, args := b.buildTemporalAggDeltaFastPath(start, end, query, timeSeriesCTE, timeSeriesCTEArgs)
|
||||
if frag != "" {
|
||||
if frag, args, err := b.buildTemporalAggDeltaFastPath(start, end, query, timeSeriesCTE, timeSeriesCTEArgs); err != nil {
|
||||
return nil, err
|
||||
} else if frag != "" {
|
||||
cteFragments = append(cteFragments, frag)
|
||||
cteArgs = append(cteArgs, args)
|
||||
}
|
||||
@@ -273,8 +234,9 @@ func (b *MetricQueryStatementBuilder) buildPipelineStatement(
|
||||
}
|
||||
|
||||
// spatial_aggregation_cte
|
||||
frag, args := b.buildSpatialAggregationCTE(ctx, start, end, query, keys)
|
||||
if frag != "" {
|
||||
if frag, args, err := b.buildSpatialAggregationCTE(ctx, start, end, query, keys); err != nil {
|
||||
return nil, err
|
||||
} else if frag != "" {
|
||||
cteFragments = append(cteFragments, frag)
|
||||
cteArgs = append(cteArgs, args)
|
||||
}
|
||||
@@ -294,7 +256,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDeltaFastPath(
|
||||
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
|
||||
timeSeriesCTE string,
|
||||
timeSeriesCTEArgs []any,
|
||||
) (string, []any) {
|
||||
) (string, []any, error) {
|
||||
stepSec := int64(query.StepInterval.Seconds())
|
||||
|
||||
sb := sqlbuilder.NewSelectBuilder()
|
||||
@@ -307,10 +269,13 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDeltaFastPath(
|
||||
sb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
|
||||
}
|
||||
|
||||
aggCol := AggregationColumnForSamplesTable(
|
||||
aggCol, err := AggregationColumnForSamplesTable(
|
||||
start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality,
|
||||
query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints,
|
||||
)
|
||||
if err != nil {
|
||||
return "", []any{}, err
|
||||
}
|
||||
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
|
||||
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
|
||||
}
|
||||
@@ -334,7 +299,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDeltaFastPath(
|
||||
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
|
||||
|
||||
q, args := sb.BuildWithFlavor(sqlbuilder.ClickHouse, timeSeriesCTEArgs...)
|
||||
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args
|
||||
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args, nil
|
||||
}
|
||||
|
||||
func (b *MetricQueryStatementBuilder) buildTimeSeriesCTE(
|
||||
@@ -437,7 +402,10 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDelta(
|
||||
sb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
|
||||
}
|
||||
|
||||
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
if err != nil {
|
||||
return "", []any{}, err
|
||||
}
|
||||
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
|
||||
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
|
||||
}
|
||||
@@ -461,7 +429,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDelta(
|
||||
}
|
||||
|
||||
func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
|
||||
ctx context.Context,
|
||||
_ context.Context,
|
||||
start, end uint64,
|
||||
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
|
||||
timeSeriesCTE string,
|
||||
@@ -479,7 +447,10 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
|
||||
baseSb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
|
||||
}
|
||||
|
||||
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
if err != nil {
|
||||
return "", []any{}, err
|
||||
}
|
||||
baseSb.SelectMore(fmt.Sprintf("%s AS per_series_value", aggCol))
|
||||
|
||||
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
@@ -496,36 +467,25 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
|
||||
|
||||
innerQuery, innerArgs := baseSb.BuildWithFlavor(sqlbuilder.ClickHouse, timeSeriesCTEArgs...)
|
||||
|
||||
// ! TODO (balanikaran) Get OrgID via function parameter instead of valuer.GenerateUUID()
|
||||
interpolationEnabled := b.flagger.BooleanOrEmpty(ctx, flagger.FeatureInterpolationEnabled, featuretypes.NewFlaggerEvaluationContext(valuer.GenerateUUID()))
|
||||
|
||||
switch query.Aggregations[0].TimeAggregation {
|
||||
case metrictypes.TimeAggregationRate:
|
||||
rateExpr := fmt.Sprintf(RateWithoutNegative, start, start)
|
||||
if interpolationEnabled {
|
||||
rateExpr = RateWithInterpolation
|
||||
}
|
||||
wrapped := sqlbuilder.NewSelectBuilder()
|
||||
wrapped.Select("ts")
|
||||
for _, g := range query.GroupBy {
|
||||
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
|
||||
}
|
||||
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", rateExpr))
|
||||
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", RateTmpl))
|
||||
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
|
||||
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
|
||||
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
|
||||
|
||||
case metrictypes.TimeAggregationIncrease:
|
||||
incExpr := fmt.Sprintf(IncreaseWithoutNegative, start, start)
|
||||
if interpolationEnabled {
|
||||
incExpr = IncreaseWithInterpolation
|
||||
}
|
||||
wrapped := sqlbuilder.NewSelectBuilder()
|
||||
wrapped.Select("ts")
|
||||
for _, g := range query.GroupBy {
|
||||
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
|
||||
}
|
||||
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", incExpr))
|
||||
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", IncreaseTmpl))
|
||||
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
|
||||
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
|
||||
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
|
||||
@@ -534,7 +494,6 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
|
||||
}
|
||||
}
|
||||
|
||||
// because RateInterpolation is not enabled anywhere due to some gaps in the logic wrt cache handling, it hasn't been considered for the multi temporality
|
||||
func (b *MetricQueryStatementBuilder) buildTemporalAggForMultipleTemporalities(
|
||||
_ context.Context,
|
||||
start, end uint64,
|
||||
@@ -553,18 +512,32 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggForMultipleTemporalities(
|
||||
sb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
|
||||
}
|
||||
|
||||
aggForDeltaTemporality := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Delta, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
aggForCumulativeTemporality := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Cumulative, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
aggForDeltaTemporality, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Delta, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
if err != nil {
|
||||
return "", []any{}, err
|
||||
}
|
||||
aggForCumulativeTemporality, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Cumulative, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
|
||||
if err != nil {
|
||||
return "", []any{}, err
|
||||
}
|
||||
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
|
||||
aggForDeltaTemporality = fmt.Sprintf("%s/%d", aggForDeltaTemporality, stepSec)
|
||||
}
|
||||
|
||||
switch query.Aggregations[0].TimeAggregation {
|
||||
case metrictypes.TimeAggregationRate:
|
||||
rateExpr := fmt.Sprintf(RateWithoutNegativeMultiTemporality, aggForDeltaTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, start, aggForCumulativeTemporality, aggForCumulativeTemporality, start)
|
||||
rateExpr := fmt.Sprintf(RateWithoutNegativeMultiTemporality,
|
||||
aggForDeltaTemporality,
|
||||
aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality,
|
||||
aggForCumulativeTemporality, aggForCumulativeTemporality,
|
||||
)
|
||||
sb.SelectMore(rateExpr)
|
||||
case metrictypes.TimeAggregationIncrease:
|
||||
increaseExpr := fmt.Sprintf(IncreaseWithoutNegativeMultiTemporality, aggForDeltaTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, start, start)
|
||||
increaseExpr := fmt.Sprintf(IncreaseWithoutNegativeMultiTemporality,
|
||||
aggForDeltaTemporality,
|
||||
aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality,
|
||||
aggForCumulativeTemporality, aggForCumulativeTemporality,
|
||||
)
|
||||
sb.SelectMore(increaseExpr)
|
||||
default:
|
||||
expr := fmt.Sprintf(OthersMultiTemporality, aggForDeltaTemporality, aggForCumulativeTemporality)
|
||||
@@ -592,7 +565,14 @@ func (b *MetricQueryStatementBuilder) buildSpatialAggregationCTE(
|
||||
_ uint64,
|
||||
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
|
||||
_ map[string][]*telemetrytypes.TelemetryFieldKey,
|
||||
) (string, []any) {
|
||||
) (string, []any, error) {
|
||||
if query.Aggregations[0].SpaceAggregation.IsZero() {
|
||||
return "", []any{}, errors.Newf(
|
||||
errors.TypeInvalidInput,
|
||||
errors.CodeInvalidInput,
|
||||
"invalid space aggregation, should be one of the following: [`sum`, `avg`, `min`, `max`, `count`, `p50`, `p75`, `p90`, `p95`, `p99`]",
|
||||
)
|
||||
}
|
||||
sb := sqlbuilder.NewSelectBuilder()
|
||||
|
||||
sb.Select("ts")
|
||||
@@ -609,7 +589,7 @@ func (b *MetricQueryStatementBuilder) buildSpatialAggregationCTE(
|
||||
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
|
||||
|
||||
q, args := sb.BuildWithFlavor(sqlbuilder.ClickHouse)
|
||||
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args
|
||||
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args, nil
|
||||
}
|
||||
|
||||
func (b *MetricQueryStatementBuilder) BuildFinalSelect(
|
||||
|
||||
@@ -3,6 +3,7 @@ package telemetrymetrics
|
||||
import (
|
||||
"time"
|
||||
|
||||
"github.com/SigNoz/signoz/pkg/errors"
|
||||
"github.com/SigNoz/signoz/pkg/types/metrictypes"
|
||||
)
|
||||
|
||||
@@ -168,7 +169,7 @@ func AggregationColumnForSamplesTable(
|
||||
temporality metrictypes.Temporality,
|
||||
timeAggregation metrictypes.TimeAggregation,
|
||||
tableHints *metrictypes.MetricTableHints,
|
||||
) string {
|
||||
) (string, error) {
|
||||
tableName := WhichSamplesTableToUse(start, end, metricType, timeAggregation, tableHints)
|
||||
var aggregationColumn string
|
||||
switch temporality {
|
||||
@@ -298,5 +299,12 @@ func AggregationColumnForSamplesTable(
|
||||
}
|
||||
}
|
||||
}
|
||||
return aggregationColumn
|
||||
if aggregationColumn == "" {
|
||||
return "", errors.Newf(
|
||||
errors.TypeInvalidInput,
|
||||
errors.CodeInvalidInput,
|
||||
"invalid time aggregation, should be one of the following: [`latest`, `sum`, `avg`, `min`, `max`, `count`, `rate`, `increase`]",
|
||||
)
|
||||
}
|
||||
return aggregationColumn, nil
|
||||
}
|
||||
|
||||
@@ -35,13 +35,7 @@ func (c *conditionBuilder) conditionFor(
|
||||
sb *sqlbuilder.SelectBuilder,
|
||||
) (string, error) {
|
||||
|
||||
switch operator {
|
||||
case qbtypes.FilterOperatorContains,
|
||||
qbtypes.FilterOperatorNotContains,
|
||||
qbtypes.FilterOperatorILike,
|
||||
qbtypes.FilterOperatorNotILike,
|
||||
qbtypes.FilterOperatorLike,
|
||||
qbtypes.FilterOperatorNotLike:
|
||||
if operator.IsStringSearchOperator() {
|
||||
value = querybuilder.FormatValueForContains(value)
|
||||
}
|
||||
|
||||
|
||||
@@ -152,7 +152,9 @@ func (f FilterOperator) IsStringSearchOperator() bool {
|
||||
FilterOperatorILike,
|
||||
FilterOperatorNotILike,
|
||||
FilterOperatorLike,
|
||||
FilterOperatorNotLike:
|
||||
FilterOperatorNotLike,
|
||||
FilterOperatorRegexp,
|
||||
FilterOperatorNotRegexp:
|
||||
return true
|
||||
default:
|
||||
return false
|
||||
|
||||
@@ -12,6 +12,7 @@ import (
|
||||
var (
|
||||
ErrColumnNotFound = errors.Newf(errors.TypeNotFound, errors.CodeNotFound, "field not found")
|
||||
ErrBetweenValues = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "(not) between operator requires two values")
|
||||
ErrBetweenValuesType = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "(not) between operator requires two values of the number type")
|
||||
ErrInValues = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "(not) in operator requires a list of values")
|
||||
ErrUnsupportedOperator = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "unsupported operator")
|
||||
)
|
||||
|
||||
@@ -179,14 +179,6 @@ func (q *QueryBuilderQuery[T]) validateAggregations() error {
|
||||
aggId,
|
||||
)
|
||||
}
|
||||
// Validate metric-specific aggregations
|
||||
if err := validateMetricAggregation(v); err != nil {
|
||||
aggId := fmt.Sprintf("aggregation #%d", i+1)
|
||||
if q.Name != "" {
|
||||
aggId = fmt.Sprintf("aggregation #%d in query '%s'", i+1, q.Name)
|
||||
}
|
||||
return wrapValidationError(err, aggId, "invalid metric %s: %s")
|
||||
}
|
||||
case TraceAggregation:
|
||||
if v.Expression == "" {
|
||||
aggId := fmt.Sprintf("aggregation #%d", i+1)
|
||||
@@ -803,85 +795,3 @@ func validateQueryEnvelope(envelope QueryEnvelope, requestType RequestType) erro
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// validateMetricAggregation validates metric-specific aggregation parameters
|
||||
func validateMetricAggregation(agg MetricAggregation) error {
|
||||
// we can't decide anything here without known temporality
|
||||
if agg.Temporality == metrictypes.Unknown {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Validate that rate/increase are only used with appropriate temporalities
|
||||
if agg.TimeAggregation == metrictypes.TimeAggregationRate || agg.TimeAggregation == metrictypes.TimeAggregationIncrease {
|
||||
// For gauge metrics (Unspecified temporality), rate/increase doesn't make sense
|
||||
if agg.Temporality == metrictypes.Unspecified {
|
||||
return errors.NewInvalidInputf(
|
||||
errors.CodeInvalidInput,
|
||||
"rate/increase aggregation cannot be used with gauge metrics (unspecified temporality)",
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// Validate percentile aggregations are only used with histogram types
|
||||
if agg.SpaceAggregation.IsPercentile() {
|
||||
if agg.Type != metrictypes.HistogramType && agg.Type != metrictypes.ExpHistogramType && agg.Type != metrictypes.SummaryType {
|
||||
return errors.NewInvalidInputf(
|
||||
errors.CodeInvalidInput,
|
||||
"percentile aggregation can only be used with histogram or summary metric types",
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// Validate time aggregation values
|
||||
validTimeAggregations := []metrictypes.TimeAggregation{
|
||||
metrictypes.TimeAggregationUnspecified,
|
||||
metrictypes.TimeAggregationLatest,
|
||||
metrictypes.TimeAggregationSum,
|
||||
metrictypes.TimeAggregationAvg,
|
||||
metrictypes.TimeAggregationMin,
|
||||
metrictypes.TimeAggregationMax,
|
||||
metrictypes.TimeAggregationCount,
|
||||
metrictypes.TimeAggregationCountDistinct,
|
||||
metrictypes.TimeAggregationRate,
|
||||
metrictypes.TimeAggregationIncrease,
|
||||
}
|
||||
|
||||
validTimeAgg := slices.Contains(validTimeAggregations, agg.TimeAggregation)
|
||||
if !validTimeAgg {
|
||||
return errors.NewInvalidInputf(
|
||||
errors.CodeInvalidInput,
|
||||
"invalid time aggregation: %s",
|
||||
agg.TimeAggregation.StringValue(),
|
||||
).WithAdditional(
|
||||
"Valid time aggregations: latest, sum, avg, min, max, count, count_distinct, rate, increase",
|
||||
)
|
||||
}
|
||||
|
||||
// Validate space aggregation values
|
||||
validSpaceAggregations := []metrictypes.SpaceAggregation{
|
||||
metrictypes.SpaceAggregationUnspecified,
|
||||
metrictypes.SpaceAggregationSum,
|
||||
metrictypes.SpaceAggregationAvg,
|
||||
metrictypes.SpaceAggregationMin,
|
||||
metrictypes.SpaceAggregationMax,
|
||||
metrictypes.SpaceAggregationCount,
|
||||
metrictypes.SpaceAggregationPercentile50,
|
||||
metrictypes.SpaceAggregationPercentile75,
|
||||
metrictypes.SpaceAggregationPercentile90,
|
||||
metrictypes.SpaceAggregationPercentile95,
|
||||
metrictypes.SpaceAggregationPercentile99,
|
||||
}
|
||||
|
||||
validSpaceAgg := slices.Contains(validSpaceAggregations, agg.SpaceAggregation)
|
||||
if !validSpaceAgg {
|
||||
return errors.NewInvalidInputf(
|
||||
errors.CodeInvalidInput,
|
||||
"invalid space aggregation: %s",
|
||||
agg.SpaceAggregation.StringValue(),
|
||||
).WithAdditional(
|
||||
"Valid space aggregations: sum, avg, min, max, count, p50, p75, p90, p95, p99",
|
||||
)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -54,17 +54,17 @@ def test_rate_with_steady_values_and_reset(
|
||||
|
||||
data = response.json()
|
||||
result_values = sorted(get_series_values(data, "A"), key=lambda x: x["timestamp"])
|
||||
assert len(result_values) >= 59
|
||||
assert len(result_values) >= 58
|
||||
# the counter reset happened at 31st minute
|
||||
assert (
|
||||
result_values[30]["value"] == 0.0167
|
||||
result_values[29]["value"] == 0.0167
|
||||
) # i.e 2/120 i.e 29th to 31st minute changes
|
||||
assert (
|
||||
result_values[31]["value"] == 0.133
|
||||
result_values[30]["value"] == 0.133
|
||||
) # i.e 10/60 i.e 31st to 32nd minute changes
|
||||
count_of_steady_rate = sum(1 for v in result_values if v["value"] == 0.0833)
|
||||
assert (
|
||||
count_of_steady_rate >= 56
|
||||
count_of_steady_rate >= 55
|
||||
) # 59 - (1 reset + 1 high rate + 1 at the beginning)
|
||||
# All rates should be non-negative (stale periods = 0 rate)
|
||||
for v in result_values:
|
||||
|
||||
@@ -21,8 +21,13 @@ from fixtures.querier import (
|
||||
from fixtures.utils import get_testdata_file_path
|
||||
|
||||
MULTI_TEMPORALITY_FILE = get_testdata_file_path("multi_temporality_counters_1h.jsonl")
|
||||
MULTI_TEMPORALITY_FILE_10h = get_testdata_file_path("multi_temporality_counters_10h.jsonl")
|
||||
MULTI_TEMPORALITY_FILE_24h = get_testdata_file_path("multi_temporality_counters_24h.jsonl")
|
||||
MULTI_TEMPORALITY_FILE_10h = get_testdata_file_path(
|
||||
"multi_temporality_counters_10h.jsonl"
|
||||
)
|
||||
MULTI_TEMPORALITY_FILE_24h = get_testdata_file_path(
|
||||
"multi_temporality_counters_24h.jsonl"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"time_aggregation, expected_value_at_31st_minute, expected_value_at_32nd_minute, steady_value",
|
||||
@@ -39,7 +44,7 @@ def test_with_steady_values_and_reset(
|
||||
time_aggregation: str,
|
||||
expected_value_at_31st_minute: float,
|
||||
expected_value_at_32nd_minute: float,
|
||||
steady_value: float
|
||||
steady_value: float,
|
||||
) -> None:
|
||||
now = datetime.now(tz=timezone.utc).replace(second=0, microsecond=0)
|
||||
start_ms = int((now - timedelta(minutes=65)).timestamp() * 1000)
|
||||
@@ -67,24 +72,24 @@ def test_with_steady_values_and_reset(
|
||||
|
||||
data = response.json()
|
||||
result_values = sorted(get_series_values(data, "A"), key=lambda x: x["timestamp"])
|
||||
assert len(result_values) >= 59
|
||||
assert len(result_values) >= 58
|
||||
# the counter reset happened at 31st minute
|
||||
# we skip the rate value for the first data point without previous value
|
||||
assert result_values[29]["value"] == expected_value_at_31st_minute
|
||||
assert result_values[30]["value"] == expected_value_at_32nd_minute
|
||||
assert (
|
||||
result_values[30]["value"] == expected_value_at_31st_minute
|
||||
)
|
||||
assert (
|
||||
result_values[31]["value"] == expected_value_at_32nd_minute
|
||||
)
|
||||
assert (
|
||||
result_values[39]["value"] == steady_value
|
||||
) # 39th minute is when cumulative shifts to delta
|
||||
result_values[38]["value"] == steady_value
|
||||
) # 38th minute is when cumulative shifts to delta
|
||||
count_of_steady_rate = sum(1 for v in result_values if v["value"] == steady_value)
|
||||
assert (
|
||||
count_of_steady_rate >= 56
|
||||
count_of_steady_rate >= 55
|
||||
) # 59 - (1 reset + 1 high rate + 1 at the beginning)
|
||||
# All rates should be non-negative (stale periods = 0 rate)
|
||||
for v in result_values:
|
||||
assert v["value"] >= 0, f"{time_aggregation} should not be negative: {v['value']}"
|
||||
assert (
|
||||
v["value"] >= 0
|
||||
), f"{time_aggregation} should not be negative: {v['value']}"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"time_aggregation, stable_health_value, stable_products_value, stable_checkout_value, spike_checkout_value, stable_orders_value, spike_users_value",
|
||||
@@ -161,20 +166,26 @@ def test_group_by_endpoint(
|
||||
assert (
|
||||
len(health_values) >= 58
|
||||
), f"Expected >= 58 values for /health, got {len(health_values)}"
|
||||
count_steady_health = sum(1 for v in health_values if v["value"] == stable_health_value)
|
||||
count_steady_health = sum(
|
||||
1 for v in health_values if v["value"] == stable_health_value
|
||||
)
|
||||
assert (
|
||||
count_steady_health >= 57
|
||||
), f"Expected >= 57 steady rate values ({stable_health_value}) for /health, got {count_steady_health}"
|
||||
# all /health rates should be state except possibly first/last due to boundaries
|
||||
for v in health_values[1:-1]:
|
||||
assert v["value"] == stable_health_value, f"Expected /health rate {stable_health_value}, got {v['value']}"
|
||||
assert (
|
||||
v["value"] == stable_health_value
|
||||
), f"Expected /health rate {stable_health_value}, got {v['value']}"
|
||||
|
||||
# /products: 51 data points with 10-minute gap (t20-t29 missing), steady +20/min
|
||||
products_values = endpoint_values["/products"]
|
||||
assert (
|
||||
len(products_values) >= 49
|
||||
), f"Expected >= 49 values for /products, got {len(products_values)}"
|
||||
count_steady_products = sum(1 for v in products_values if v["value"] == stable_products_value)
|
||||
count_steady_products = sum(
|
||||
1 for v in products_values if v["value"] == stable_products_value
|
||||
)
|
||||
|
||||
# most values should be stable, some boundary values differ due to 10-min gap
|
||||
assert (
|
||||
@@ -182,7 +193,9 @@ def test_group_by_endpoint(
|
||||
), f"Expected >= 46 steady rate values ({stable_products_value}) for /products, got {count_steady_products}"
|
||||
|
||||
# check that non-stable values are due to gap averaging (should be lower)
|
||||
gap_boundary_values = [v["value"] for v in products_values if v["value"] != stable_products_value]
|
||||
gap_boundary_values = [
|
||||
v["value"] for v in products_values if v["value"] != stable_products_value
|
||||
]
|
||||
for val in gap_boundary_values:
|
||||
assert (
|
||||
0 < val < stable_products_value
|
||||
@@ -193,12 +206,16 @@ def test_group_by_endpoint(
|
||||
assert (
|
||||
len(checkout_values) >= 59
|
||||
), f"Expected >= 59 values for /checkout, got {len(checkout_values)}"
|
||||
count_steady_checkout = sum(1 for v in checkout_values if v["value"] == stable_checkout_value)
|
||||
count_steady_checkout = sum(
|
||||
1 for v in checkout_values if v["value"] == stable_checkout_value
|
||||
)
|
||||
assert (
|
||||
count_steady_checkout >= 53
|
||||
), f"Expected >= 53 steady {time_aggregation} values ({stable_checkout_value}) for /checkout, got {count_steady_checkout}"
|
||||
# check that spike values exist (traffic spike +50/min at t40-t44)
|
||||
count_spike_checkout = sum(1 for v in checkout_values if v["value"] == spike_checkout_value)
|
||||
count_spike_checkout = sum(
|
||||
1 for v in checkout_values if v["value"] == spike_checkout_value
|
||||
)
|
||||
assert (
|
||||
count_spike_checkout >= 4
|
||||
), f"Expected >= 4 spike {time_aggregation} values ({spike_checkout_value}) for /checkout, got {count_spike_checkout}"
|
||||
@@ -220,12 +237,16 @@ def test_group_by_endpoint(
|
||||
assert (
|
||||
len(orders_values) >= 58
|
||||
), f"Expected >= 58 values for /orders, got {len(orders_values)}"
|
||||
count_steady_orders = sum(1 for v in orders_values if v["value"] == stable_orders_value)
|
||||
count_steady_orders = sum(
|
||||
1 for v in orders_values if v["value"] == stable_orders_value
|
||||
)
|
||||
assert (
|
||||
count_steady_orders >= 55
|
||||
), f"Expected >= 55 steady {time_aggregation} values ({stable_orders_value}) for /orders, got {count_steady_orders}"
|
||||
# check for counter reset effects - there should be some non-standard values
|
||||
non_standard_orders = [v["value"] for v in orders_values if v["value"] != stable_orders_value]
|
||||
non_standard_orders = [
|
||||
v["value"] for v in orders_values if v["value"] != stable_orders_value
|
||||
]
|
||||
assert (
|
||||
len(non_standard_orders) >= 2
|
||||
), f"Expected >= 2 non-standard values due to counter reset, got {non_standard_orders}"
|
||||
@@ -252,6 +273,7 @@ def test_group_by_endpoint(
|
||||
count_increment_rate >= 8
|
||||
), f"Expected >= 8 increment {time_aggregation} values ({spike_users_value}) for /users, got {count_increment_rate}"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"time_aggregation, expected_value_at_30th_minute, expected_value_at_31st_minute, value_at_switch",
|
||||
[
|
||||
@@ -267,7 +289,7 @@ def test_for_service_with_switch(
|
||||
time_aggregation: str,
|
||||
expected_value_at_30th_minute: float,
|
||||
expected_value_at_31st_minute: float,
|
||||
value_at_switch: float
|
||||
value_at_switch: float,
|
||||
) -> None:
|
||||
now = datetime.now(tz=timezone.utc).replace(second=0, microsecond=0)
|
||||
start_ms = int((now - timedelta(minutes=65)).timestamp() * 1000)
|
||||
@@ -295,22 +317,19 @@ def test_for_service_with_switch(
|
||||
|
||||
data = response.json()
|
||||
result_values = sorted(get_series_values(data, "A"), key=lambda x: x["timestamp"])
|
||||
assert len(result_values) >= 60
|
||||
assert len(result_values) >= 59
|
||||
assert result_values[29]["value"] == expected_value_at_30th_minute # 0.183
|
||||
assert result_values[30]["value"] == expected_value_at_31st_minute # 0.183
|
||||
assert result_values[37]["value"] == value_at_switch # 0.25
|
||||
assert (
|
||||
result_values[30]["value"] == expected_value_at_30th_minute #0.183
|
||||
)
|
||||
assert (
|
||||
result_values[31]["value"] == expected_value_at_31st_minute # 0.183
|
||||
)
|
||||
assert (
|
||||
result_values[38]["value"] == value_at_switch # 0.25
|
||||
)
|
||||
assert (
|
||||
result_values[39]["value"] == value_at_switch # 0.25
|
||||
) # 39th minute is when cumulative shifts to delta
|
||||
result_values[38]["value"] == value_at_switch # 0.25
|
||||
) # 39th minute is when cumulative shifts to delta
|
||||
# All rates should be non-negative (stale periods = 0 rate)
|
||||
for v in result_values:
|
||||
assert v["value"] >= 0, f"{time_aggregation} should not be negative: {v['value']}"
|
||||
assert (
|
||||
v["value"] >= 0
|
||||
), f"{time_aggregation} should not be negative: {v['value']}"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"time_aggregation, expected_value",
|
||||
@@ -355,6 +374,7 @@ def test_for_week_long_time_range(
|
||||
for value in result_values[1:]:
|
||||
assert value["value"] == expected_value
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"time_aggregation, expected_value",
|
||||
[
|
||||
|
||||
Reference in New Issue
Block a user