mirror of
https://github.com/koush/scrypted.git
synced 2026-02-03 14:13:28 +00:00
Compare commits
50 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5a52c03a3d | ||
|
|
f9f597ef01 | ||
|
|
2e07788c0c | ||
|
|
9c0fbc1cb6 | ||
|
|
239d49899d | ||
|
|
2d3589b5a3 | ||
|
|
96ec465a38 | ||
|
|
5bb6b87c7d | ||
|
|
fcfedccaf8 | ||
|
|
98373833fd | ||
|
|
03588be125 | ||
|
|
cdd81daec5 | ||
|
|
d64f90c0c8 | ||
|
|
ec31dee36e | ||
|
|
11f2e88590 | ||
|
|
bf51ddb2d5 | ||
|
|
26000f1828 | ||
|
|
f65485af97 | ||
|
|
72c5690d05 | ||
|
|
e076d61122 | ||
|
|
7071808514 | ||
|
|
1e2fd46cd3 | ||
|
|
e3cdd4326f | ||
|
|
227f932ad8 | ||
|
|
67cec188ce | ||
|
|
1ee276185e | ||
|
|
42ed855b05 | ||
|
|
93da4eed30 | ||
|
|
a72a596578 | ||
|
|
72663dd68c | ||
|
|
108d57dbdd | ||
|
|
bc71fd8515 | ||
|
|
a51070767b | ||
|
|
269cc4dbc9 | ||
|
|
684961fa4b | ||
|
|
4f60b7e379 | ||
|
|
5d72061151 | ||
|
|
f2c940c1d3 | ||
|
|
7e817b0b30 | ||
|
|
75bb15d3b7 | ||
|
|
ba1a1eff67 | ||
|
|
5432b5b917 | ||
|
|
f677cf7393 | ||
|
|
bdf9278131 | ||
|
|
0ae93a9c3f | ||
|
|
72422cdd8b | ||
|
|
390d1b3329 | ||
|
|
024e99766a | ||
|
|
0160502da8 | ||
|
|
f0d65982de |
64
.github/workflows/test.yml
vendored
64
.github/workflows/test.yml
vendored
@@ -9,52 +9,28 @@ on:
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
test_linux_local:
|
||||
name: Test Linux local installation
|
||||
runs-on: ubuntu-latest
|
||||
test_local:
|
||||
name: Test local installation on ${{ matrix.runner }}
|
||||
runs-on: ${{ matrix.runner }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
runner: [ubuntu-latest, macos-14, macos-13, windows-latest]
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Run install script
|
||||
|
||||
- name: Parse latest server release
|
||||
id: parse_server
|
||||
shell: bash
|
||||
run: |
|
||||
cat ./install/local/install-scrypted-dependencies-linux.sh | sudo SERVICE_USER=$USER bash
|
||||
|
||||
- name: Test server is running
|
||||
run: |
|
||||
systemctl status scrypted.service
|
||||
curl -k --retry 20 --retry-all-errors --retry-max-time 600 https://localhost:10443/
|
||||
|
||||
test_mac_local:
|
||||
name: Test Mac local installation
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Run install script
|
||||
run: |
|
||||
mkdir -p ~/.scrypted
|
||||
bash ./install/local/install-scrypted-dependencies-mac.sh
|
||||
|
||||
- name: Test server is running
|
||||
run: |
|
||||
curl -k --retry 20 --retry-all-errors --retry-max-time 600 https://localhost:10443/
|
||||
|
||||
test_windows_local:
|
||||
name: Test Windows local installation
|
||||
runs-on: windows-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Run install script
|
||||
run: |
|
||||
.\install\local\install-scrypted-dependencies-win.ps1
|
||||
|
||||
- name: Test server is running
|
||||
run: |
|
||||
curl -k --retry 20 --retry-all-errors --retry-max-time 600 https://localhost:10443/
|
||||
VERSION=$(cat ./server/package-lock.json | jq -r '.version')
|
||||
echo "version=$VERSION" >> "$GITHUB_OUTPUT"
|
||||
echo "Will test @scrypted/server@$VERSION"
|
||||
|
||||
- name: Install scrypted server
|
||||
uses: scryptedapp/setup-scrypted@v0.0.2
|
||||
with:
|
||||
branch: ${{ github.sha }}
|
||||
version: ${{ steps.parse_server.outputs.version }}
|
||||
103
common/package-lock.json
generated
103
common/package-lock.json
generated
@@ -74,7 +74,7 @@
|
||||
},
|
||||
"../sdk": {
|
||||
"name": "@scrypted/sdk",
|
||||
"version": "0.3.4",
|
||||
"version": "0.3.29",
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@babel/preset-typescript": "^7.18.6",
|
||||
@@ -111,64 +111,57 @@
|
||||
},
|
||||
"../server": {
|
||||
"name": "@scrypted/server",
|
||||
"version": "0.82.0",
|
||||
"version": "0.106.0",
|
||||
"hasInstallScript": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@mapbox/node-pre-gyp": "^1.0.11",
|
||||
"@scrypted/types": "^0.3.4",
|
||||
"adm-zip": "^0.5.10",
|
||||
"@scrypted/ffmpeg-static": "^6.1.0-build1",
|
||||
"@scrypted/node-pty": "^1.0.10",
|
||||
"@scrypted/types": "^0.3.28",
|
||||
"adm-zip": "^0.5.12",
|
||||
"body-parser": "^1.20.2",
|
||||
"cookie-parser": "^1.4.6",
|
||||
"debug": "^4.3.4",
|
||||
"dotenv": "^16.4.5",
|
||||
"engine.io": "^6.5.4",
|
||||
"express": "^4.18.2",
|
||||
"ffmpeg-static": "^5.2.0",
|
||||
"follow-redirects": "^1.15.4",
|
||||
"express": "^4.19.2",
|
||||
"follow-redirects": "^1.15.6",
|
||||
"http-auth": "^4.2.0",
|
||||
"ip": "^1.1.8",
|
||||
"level": "^8.0.0",
|
||||
"linkfs": "^2.1.0",
|
||||
"ip": "^2.0.1",
|
||||
"level": "^8.0.1",
|
||||
"lodash": "^4.17.21",
|
||||
"memfs": "^4.6.0",
|
||||
"mime": "^3.0.0",
|
||||
"nan": "^2.18.0",
|
||||
"nan": "^2.19.0",
|
||||
"node-dijkstra": "^2.5.0",
|
||||
"node-forge": "^1.3.1",
|
||||
"node-gyp": "^10.0.1",
|
||||
"node-gyp": "^10.1.0",
|
||||
"py": "npm:@bjia56/portable-python@^0.1.31",
|
||||
"router": "^1.3.8",
|
||||
"semver": "^7.5.4",
|
||||
"sharp": "^0.33.1",
|
||||
"semver": "^7.6.2",
|
||||
"sharp": "^0.33.3",
|
||||
"source-map-support": "^0.5.21",
|
||||
"tar": "^6.2.0",
|
||||
"tar": "^7.1.0",
|
||||
"tslib": "^2.6.2",
|
||||
"typescript": "^5.3.3",
|
||||
"typescript": "^5.4.5",
|
||||
"whatwg-mimetype": "^4.0.0",
|
||||
"ws": "^8.16.0"
|
||||
"ws": "^8.17.0"
|
||||
},
|
||||
"bin": {
|
||||
"scrypted-serve": "bin/scrypted-serve"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/adm-zip": "^0.5.5",
|
||||
"@types/cookie-parser": "^1.4.6",
|
||||
"@types/debug": "^4.1.12",
|
||||
"@types/cookie-parser": "^1.4.7",
|
||||
"@types/express": "^4.17.21",
|
||||
"@types/follow-redirects": "^1.14.4",
|
||||
"@types/http-auth": "^4.1.4",
|
||||
"@types/ip": "^1.1.3",
|
||||
"@types/lodash": "^4.14.202",
|
||||
"@types/mime": "^3.0.4",
|
||||
"@types/lodash": "^4.17.1",
|
||||
"@types/node-dijkstra": "^2.5.6",
|
||||
"@types/node-forge": "^1.3.10",
|
||||
"@types/pem": "^1.14.4",
|
||||
"@types/semver": "^7.5.6",
|
||||
"@types/node-forge": "^1.3.11",
|
||||
"@types/semver": "^7.5.8",
|
||||
"@types/source-map-support": "^0.5.10",
|
||||
"@types/tar": "^6.1.10",
|
||||
"@types/whatwg-mimetype": "^3.0.2",
|
||||
"@types/ws": "^8.5.10"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"node-pty-prebuilt-multiarch": "^0.10.1-pre.5"
|
||||
}
|
||||
},
|
||||
"node_modules/@cspotcode/source-map-support": {
|
||||
@@ -453,53 +446,47 @@
|
||||
"version": "file:../server",
|
||||
"requires": {
|
||||
"@mapbox/node-pre-gyp": "^1.0.11",
|
||||
"@scrypted/types": "^0.3.4",
|
||||
"@scrypted/ffmpeg-static": "^6.1.0-build1",
|
||||
"@scrypted/node-pty": "^1.0.10",
|
||||
"@scrypted/types": "^0.3.28",
|
||||
"@types/adm-zip": "^0.5.5",
|
||||
"@types/cookie-parser": "^1.4.6",
|
||||
"@types/debug": "^4.1.12",
|
||||
"@types/cookie-parser": "^1.4.7",
|
||||
"@types/express": "^4.17.21",
|
||||
"@types/follow-redirects": "^1.14.4",
|
||||
"@types/http-auth": "^4.1.4",
|
||||
"@types/ip": "^1.1.3",
|
||||
"@types/lodash": "^4.14.202",
|
||||
"@types/mime": "^3.0.4",
|
||||
"@types/lodash": "^4.17.1",
|
||||
"@types/node-dijkstra": "^2.5.6",
|
||||
"@types/node-forge": "^1.3.10",
|
||||
"@types/pem": "^1.14.4",
|
||||
"@types/semver": "^7.5.6",
|
||||
"@types/node-forge": "^1.3.11",
|
||||
"@types/semver": "^7.5.8",
|
||||
"@types/source-map-support": "^0.5.10",
|
||||
"@types/tar": "^6.1.10",
|
||||
"@types/whatwg-mimetype": "^3.0.2",
|
||||
"@types/ws": "^8.5.10",
|
||||
"adm-zip": "^0.5.10",
|
||||
"adm-zip": "^0.5.12",
|
||||
"body-parser": "^1.20.2",
|
||||
"cookie-parser": "^1.4.6",
|
||||
"debug": "^4.3.4",
|
||||
"dotenv": "^16.4.5",
|
||||
"engine.io": "^6.5.4",
|
||||
"express": "^4.18.2",
|
||||
"ffmpeg-static": "^5.2.0",
|
||||
"follow-redirects": "^1.15.4",
|
||||
"express": "^4.19.2",
|
||||
"follow-redirects": "^1.15.6",
|
||||
"http-auth": "^4.2.0",
|
||||
"ip": "^1.1.8",
|
||||
"level": "^8.0.0",
|
||||
"linkfs": "^2.1.0",
|
||||
"ip": "^2.0.1",
|
||||
"level": "^8.0.1",
|
||||
"lodash": "^4.17.21",
|
||||
"memfs": "^4.6.0",
|
||||
"mime": "^3.0.0",
|
||||
"nan": "^2.18.0",
|
||||
"nan": "^2.19.0",
|
||||
"node-dijkstra": "^2.5.0",
|
||||
"node-forge": "^1.3.1",
|
||||
"node-gyp": "^10.0.1",
|
||||
"node-pty-prebuilt-multiarch": "^0.10.1-pre.5",
|
||||
"node-gyp": "^10.1.0",
|
||||
"py": "npm:@bjia56/portable-python@^0.1.31",
|
||||
"router": "^1.3.8",
|
||||
"semver": "^7.5.4",
|
||||
"sharp": "^0.33.1",
|
||||
"semver": "^7.6.2",
|
||||
"sharp": "^0.33.3",
|
||||
"source-map-support": "^0.5.21",
|
||||
"tar": "^6.2.0",
|
||||
"tar": "^7.1.0",
|
||||
"tslib": "^2.6.2",
|
||||
"typescript": "^5.3.3",
|
||||
"typescript": "^5.4.5",
|
||||
"whatwg-mimetype": "^4.0.0",
|
||||
"ws": "^8.16.0"
|
||||
"ws": "^8.17.0"
|
||||
}
|
||||
},
|
||||
"@tsconfig/node10": {
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Home Assistant Addon Configuration
|
||||
name: Scrypted
|
||||
version: "v0.102.0-jammy-full"
|
||||
version: "v0.105.0-jammy-full"
|
||||
slug: scrypted
|
||||
description: Scrypted is a high performance home video integration and automation platform
|
||||
url: "https://github.com/koush/scrypted"
|
||||
|
||||
@@ -35,7 +35,7 @@ services:
|
||||
# Avahi can be used for network discovery by passing in the host daemon
|
||||
# or running the daemon inside the container. Choose one or the other.
|
||||
# Uncomment next line to run avahi-daemon inside the container.
|
||||
# See volumes section below to use the host daemon.
|
||||
# See volumes and security_opt section below to use the host daemon.
|
||||
# - SCRYPTED_DOCKER_AVAHI=true
|
||||
|
||||
# NVIDIA (Part 1 of 4)
|
||||
@@ -71,11 +71,16 @@ services:
|
||||
# Ensure Avahi is running on the host machine:
|
||||
# It can be installed with: sudo apt-get install avahi-daemon
|
||||
# This is not compatible with running avahi inside the container (see above).
|
||||
# Also, uncomment the lines under security_opt
|
||||
# - /var/run/dbus:/var/run/dbus
|
||||
# - /var/run/avahi-daemon/socket:/var/run/avahi-daemon/socket
|
||||
|
||||
# Default volume for the Scrypted database. Typically should not be changed.
|
||||
- ~/.scrypted/volume:/server/volume
|
||||
# Uncomment the following lines to use Avahi daemon from the host
|
||||
# Without this, AppArmor will block the container's attempt to talk to Avahi via dbus
|
||||
# security_opt:
|
||||
# - apparmor:unconfined
|
||||
devices: [
|
||||
# uncomment the common systems devices to pass
|
||||
# them through to docker.
|
||||
|
||||
@@ -61,6 +61,8 @@ then
|
||||
sudo apt-get -y install avahi-daemon
|
||||
sed -i 's/'#' - \/var\/run\/dbus/- \/var\/run\/dbus/g' $DOCKER_COMPOSE_YML
|
||||
sed -i 's/'#' - \/var\/run\/avahi-daemon/- \/var\/run\/avahi-daemon/g' $DOCKER_COMPOSE_YML
|
||||
sed -i 's/'#' security_opt:/security_opt:/g' $DOCKER_COMPOSE_YML
|
||||
sed -i 's/'#' - apparmor:unconfined/ - apparmor:unconfined/g' $DOCKER_COMPOSE_YML
|
||||
fi
|
||||
|
||||
echo "Setting permissions on $SCRYPTED_HOME"
|
||||
|
||||
@@ -96,7 +96,17 @@ then
|
||||
set +e
|
||||
|
||||
sync
|
||||
mkfs -F -t ext4 "$BLOCK_DEVICE"1
|
||||
PARTITION_DEVICE="$BLOCK_DEVICE"1
|
||||
if [ ! -e "$PARTITION_DEVICE" ]
|
||||
then
|
||||
PARTITION_DEVICE="$BLOCK_DEVICE"p1
|
||||
if [ ! -e "$PARTITION_DEVICE" ]
|
||||
then
|
||||
echo "Unable to determine block device partition from block device: $BLOCK_DEVICE"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
mkfs -F -t ext4 "$PARTITION_DEVICE"
|
||||
sync
|
||||
|
||||
# parse/evaluate blkid line as env vars
|
||||
|
||||
@@ -97,7 +97,7 @@ echo "docker compose rm -rf"
|
||||
sudo -u $SERVICE_USER docker rm -f /scrypted /scrypted-watchtower 2> /dev/null
|
||||
|
||||
echo "Installing Scrypted..."
|
||||
RUN sudo -u $SERVICE_USER npx -y scrypted@latest install-server
|
||||
RUN sudo -u $SERVICE_USER npx -y scrypted@latest install-server $SCRYPTED_INSTALL_VERSION
|
||||
|
||||
cat > /etc/systemd/system/scrypted.service <<EOT
|
||||
|
||||
|
||||
@@ -121,7 +121,7 @@ then
|
||||
fi
|
||||
|
||||
echo "Installing Scrypted..."
|
||||
RUN $NPX_PATH -y scrypted@latest install-server
|
||||
RUN $NPX_PATH -y scrypted@latest install-server $SCRYPTED_INSTALL_VERSION
|
||||
|
||||
cat > ~/Library/LaunchAgents/app.scrypted.server.plist <<EOT
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
|
||||
@@ -26,7 +26,12 @@ $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";"
|
||||
py $SCRYPTED_WINDOWS_PYTHON_VERSION -m pip install --upgrade pip
|
||||
py $SCRYPTED_WINDOWS_PYTHON_VERSION -m pip install debugpy typing_extensions typing opencv-python
|
||||
|
||||
npx -y scrypted@latest install-server
|
||||
$SCRYPTED_INSTALL_VERSION=[System.Environment]::GetEnvironmentVariable("SCRYPTED_INSTALL_VERSION","User")
|
||||
if ($SCRYPTED_INSTALL_VERSION -eq $null) {
|
||||
npx -y scrypted@latest install-server
|
||||
} else {
|
||||
npx -y scrypted@latest install-server $SCRYPTED_INSTALL_VERSION
|
||||
}
|
||||
|
||||
$USER_HOME_ESCAPED = $env:USERPROFILE.replace('\', '\\')
|
||||
$SCRYPTED_HOME = $env:USERPROFILE + '\.scrypted'
|
||||
|
||||
4
packages/cli/package-lock.json
generated
4
packages/cli/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "scrypted",
|
||||
"version": "1.3.15",
|
||||
"version": "1.3.16",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "scrypted",
|
||||
"version": "1.3.15",
|
||||
"version": "1.3.16",
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@scrypted/client": "^1.3.3",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "scrypted",
|
||||
"version": "1.3.15",
|
||||
"version": "1.3.16",
|
||||
"description": "",
|
||||
"main": "./dist/packages/cli/src/main.js",
|
||||
"bin": {
|
||||
|
||||
@@ -14,8 +14,12 @@ const EXIT_FILE = '.exit';
|
||||
const UPDATE_FILE = '.update';
|
||||
|
||||
async function runCommand(command: string, ...args: string[]) {
|
||||
if (os.platform() === 'win32')
|
||||
if (os.platform() === 'win32') {
|
||||
command += '.cmd';
|
||||
// wrap each argument in a quote to handle spaces in paths
|
||||
// https://github.com/nodejs/node/issues/38490#issuecomment-927330248
|
||||
args = args.map(arg => '"' + arg + '"');
|
||||
}
|
||||
console.log('running', command, ...args);
|
||||
const cp = child_process.spawn(command, args, {
|
||||
stdio: 'inherit',
|
||||
|
||||
4
plugins/amcrest/package-lock.json
generated
4
plugins/amcrest/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@scrypted/amcrest",
|
||||
"version": "0.0.150",
|
||||
"version": "0.0.151",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@scrypted/amcrest",
|
||||
"version": "0.0.150",
|
||||
"version": "0.0.151",
|
||||
"license": "Apache",
|
||||
"dependencies": {
|
||||
"@scrypted/common": "file:../../common",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@scrypted/amcrest",
|
||||
"version": "0.0.150",
|
||||
"version": "0.0.151",
|
||||
"description": "Amcrest Plugin for Scrypted",
|
||||
"author": "Scrypted",
|
||||
"license": "Apache",
|
||||
|
||||
@@ -134,7 +134,7 @@ export interface AmcrestEventData {
|
||||
export enum AmcrestEvent {
|
||||
MotionStart = "Code=VideoMotion;action=Start",
|
||||
MotionStop = "Code=VideoMotion;action=Stop",
|
||||
MotionInfo = "Code=VideoMotionInfo;action=State",
|
||||
MotionInfo = "Code=VideoMotionInfo;action=State",
|
||||
AudioStart = "Code=AudioMutation;action=Start",
|
||||
AudioStop = "Code=AudioMutation;action=Stop",
|
||||
TalkInvite = "Code=_DoTalkAction_;action=Invite",
|
||||
@@ -263,6 +263,8 @@ export class AmcrestCameraClient {
|
||||
// make content type parsable as content disposition filename
|
||||
const cd = contentType.parse(ct);
|
||||
let { boundary } = cd.parameters;
|
||||
// amcrest may send "--myboundary" or "-- myboundary" (with a space)
|
||||
const altBoundary = `-- ${boundary}`;
|
||||
boundary = `--${boundary}`;
|
||||
const boundaryEnd = `${boundary}--`;
|
||||
|
||||
@@ -286,7 +288,7 @@ export class AmcrestCameraClient {
|
||||
this.console.log('ignoring dahua http body', body);
|
||||
continue;
|
||||
}
|
||||
if (ignore !== boundary) {
|
||||
if (ignore !== boundary && ignore !== altBoundary) {
|
||||
this.console.error('expected boundary but found', ignore);
|
||||
this.console.error(response.headers);
|
||||
throw new Error('expected boundary');
|
||||
|
||||
4
plugins/coreml/package-lock.json
generated
4
plugins/coreml/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@scrypted/coreml",
|
||||
"version": "0.1.51",
|
||||
"version": "0.1.54",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@scrypted/coreml",
|
||||
"version": "0.1.51",
|
||||
"version": "0.1.54",
|
||||
"devDependencies": {
|
||||
"@scrypted/sdk": "file:../../sdk"
|
||||
}
|
||||
|
||||
@@ -42,5 +42,5 @@
|
||||
"devDependencies": {
|
||||
"@scrypted/sdk": "file:../../sdk"
|
||||
},
|
||||
"version": "0.1.51"
|
||||
"version": "0.1.54"
|
||||
}
|
||||
|
||||
@@ -26,15 +26,13 @@ predictExecutor = concurrent.futures.ThreadPoolExecutor(1, "CoreML-Predict")
|
||||
|
||||
availableModels = [
|
||||
"Default",
|
||||
"scrypted_yolov10m_320",
|
||||
"scrypted_yolov10n_320",
|
||||
"scrypted_yolo_nas_s_320",
|
||||
"scrypted_yolov9c_320",
|
||||
"scrypted_yolov9c",
|
||||
"scrypted_yolov6n_320",
|
||||
"scrypted_yolov6n",
|
||||
"scrypted_yolov6s_320",
|
||||
"scrypted_yolov6s",
|
||||
"scrypted_yolov8n_320",
|
||||
"scrypted_yolov8n",
|
||||
"ssdlite_mobilenet_v2",
|
||||
"yolov4-tiny",
|
||||
]
|
||||
@@ -78,6 +76,7 @@ class CoreMLPlugin(PredictPlugin, scrypted_sdk.Settings, scrypted_sdk.DeviceProv
|
||||
self.storage.setItem("model", "Default")
|
||||
model = "scrypted_yolov9c_320"
|
||||
self.yolo = "yolo" in model
|
||||
self.scrypted_yolov10n = "scrypted_yolov10" in model
|
||||
self.scrypted_yolo_nas = "scrypted_yolo_nas" in model
|
||||
self.scrypted_yolo = "scrypted_yolo" in model
|
||||
self.scrypted_model = "scrypted" in model
|
||||
@@ -217,12 +216,19 @@ class CoreMLPlugin(PredictPlugin, scrypted_sdk.Settings, scrypted_sdk.DeviceProv
|
||||
if self.yolo:
|
||||
out_dict = await self.queue_batch({self.input_name: input})
|
||||
|
||||
if self.scrypted_yolov10n:
|
||||
results = list(out_dict.values())[0][0]
|
||||
objs = yolo.parse_yolov10(results)
|
||||
ret = self.create_detection_result(objs, src_size, cvss)
|
||||
return ret
|
||||
|
||||
if self.scrypted_yolo_nas:
|
||||
predictions = list(out_dict.values())
|
||||
objs = yolo.parse_yolo_nas(predictions)
|
||||
ret = self.create_detection_result(objs, src_size, cvss)
|
||||
return ret
|
||||
elif self.scrypted_yolo:
|
||||
|
||||
if self.scrypted_yolo:
|
||||
results = list(out_dict.values())[0][0]
|
||||
objs = yolo.parse_yolov9(results)
|
||||
ret = self.create_detection_result(objs, src_size, cvss)
|
||||
|
||||
4
plugins/homekit/package-lock.json
generated
4
plugins/homekit/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@scrypted/homekit",
|
||||
"version": "1.2.56",
|
||||
"version": "1.2.57",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@scrypted/homekit",
|
||||
"version": "1.2.56",
|
||||
"version": "1.2.57",
|
||||
"dependencies": {
|
||||
"@koush/werift-src": "file:../../external/werift",
|
||||
"check-disk-space": "^3.4.0",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@scrypted/homekit",
|
||||
"version": "1.2.56",
|
||||
"version": "1.2.57",
|
||||
"description": "HomeKit Plugin for Scrypted",
|
||||
"scripts": {
|
||||
"scrypted-setup-project": "scrypted-setup-project",
|
||||
|
||||
@@ -166,10 +166,12 @@ export class HomeKitPlugin extends ScryptedDeviceBase implements MixinProvider,
|
||||
case MDNSAdvertiser.CIAO:
|
||||
break;
|
||||
default:
|
||||
if (fs.existsSync('/var/run/avahi-daemon/'))
|
||||
advertiser = MDNSAdvertiser.AVAHI;
|
||||
else
|
||||
advertiser = MDNSAdvertiser.CIAO;
|
||||
advertiser = MDNSAdvertiser.CIAO;
|
||||
// this avahi detection doesn't work sometimes? fails silently.
|
||||
// if (fs.existsSync('/var/run/avahi-daemon/'))
|
||||
// advertiser = MDNSAdvertiser.AVAHI;
|
||||
// else
|
||||
// advertiser = MDNSAdvertiser.CIAO;
|
||||
break;
|
||||
}
|
||||
return advertiser;
|
||||
@@ -267,8 +269,6 @@ export class HomeKitPlugin extends ScryptedDeviceBase implements MixinProvider,
|
||||
},
|
||||
undefined, 'Pairing'));
|
||||
storageSettings.settings.pincode.persistedDefaultValue = randomPinCode();
|
||||
// TODO: change this value after this current default has been persisted to existing clients.
|
||||
// changing it now will cause existing accessories be renamed.
|
||||
storageSettings.settings.addIdentifyingMaterial.persistedDefaultValue = false;
|
||||
|
||||
const mixinConsole = deviceManager.getMixinConsole(device.id, this.nativeId);
|
||||
|
||||
@@ -117,7 +117,7 @@ addSupportedType({
|
||||
},
|
||||
closeRecordingStream(streamId, reason) {
|
||||
const r = openRecordingStreams.get(streamId);
|
||||
r?.throw(new Error(reason?.toString()));
|
||||
console.log(`motion recording closed ${reason > 0 ? `(error code: ${reason})` : ''}`);
|
||||
openRecordingStreams.delete(streamId);
|
||||
},
|
||||
updateRecordingActive(active) {
|
||||
|
||||
@@ -321,6 +321,9 @@ export async function* handleFragmentsRequests(streamId: number, device: Scrypte
|
||||
let moov: Buffer[];
|
||||
|
||||
for await (const box of generator) {
|
||||
if (!isOpen())
|
||||
return;
|
||||
|
||||
const { header, type, data } = box;
|
||||
// console.log('motion fragment box', type);
|
||||
|
||||
@@ -352,6 +355,8 @@ export async function* handleFragmentsRequests(streamId: number, device: Scrypte
|
||||
needSkip = false;
|
||||
continue;
|
||||
}
|
||||
if (!isOpen())
|
||||
return;
|
||||
const fragment = Buffer.concat(pending);
|
||||
saveFragment(i, fragment);
|
||||
pending = [];
|
||||
@@ -361,8 +366,6 @@ export async function* handleFragmentsRequests(streamId: number, device: Scrypte
|
||||
data: fragment,
|
||||
isLast,
|
||||
}
|
||||
if (!isOpen())
|
||||
return;
|
||||
yield recordingPacket;
|
||||
if (wasLast)
|
||||
break;
|
||||
@@ -370,7 +373,7 @@ export async function* handleFragmentsRequests(streamId: number, device: Scrypte
|
||||
}
|
||||
}
|
||||
catch (e) {
|
||||
console.log(`motion recording completed ${e}`);
|
||||
console.log(`motion recording error ${e}`);
|
||||
}
|
||||
finally {
|
||||
console.log(`motion recording finished`);
|
||||
|
||||
@@ -1,9 +1,10 @@
|
||||
import sdk, { Camera, EventListenerRegister, MediaObject, MotionSensor, ObjectDetector, ObjectsDetected, Readme, RequestPictureOptions, ResponsePictureOptions, ScryptedDevice, ScryptedDeviceBase, ScryptedDeviceType, ScryptedInterface, ScryptedNativeId, Setting, SettingValue, Settings } from "@scrypted/sdk";
|
||||
import { StorageSetting, StorageSettings } from "@scrypted/sdk/storage-settings";
|
||||
import type { ObjectDetectionPlugin } from "./main";
|
||||
import { levenshteinDistance } from "./edit-distance";
|
||||
import type { ObjectDetectionPlugin } from "./main";
|
||||
|
||||
export const SMART_MOTIONSENSOR_PREFIX = 'smart-motionsensor-';
|
||||
export const SMART_OCCUPANCYSENSOR_PREFIX = 'smart-occupancysensor-';
|
||||
|
||||
export function createObjectDetectorStorageSetting(): StorageSetting {
|
||||
return {
|
||||
@@ -71,6 +72,13 @@ export class SmartMotionSensor extends ScryptedDeviceBase implements Settings, R
|
||||
type: 'number',
|
||||
defaultValue: 2,
|
||||
},
|
||||
labelScore: {
|
||||
group: 'Recognition',
|
||||
title: 'Label Score',
|
||||
description: 'The minimum score required for a label to trigger the motion sensor.',
|
||||
type: 'number',
|
||||
defaultValue: 0,
|
||||
}
|
||||
});
|
||||
|
||||
detectionListener: EventListenerRegister;
|
||||
@@ -190,7 +198,7 @@ export class SmartMotionSensor extends ScryptedDeviceBase implements Settings, R
|
||||
if (this.storageSettings.values.requireDetectionThumbnail && !detected.detectionId)
|
||||
return false;
|
||||
|
||||
const { labels, labelDistance } = this.storageSettings.values;
|
||||
const { labels, labelDistance, labelScore } = this.storageSettings.values;
|
||||
|
||||
const match = detected.detections?.find(d => {
|
||||
if (this.storageSettings.values.requireScryptedNvrDetections && !d.boundingBox)
|
||||
@@ -225,13 +233,24 @@ export class SmartMotionSensor extends ScryptedDeviceBase implements Settings, R
|
||||
return false;
|
||||
|
||||
for (const label of labels) {
|
||||
if (label === d.label)
|
||||
return true;
|
||||
if (label === d.label) {
|
||||
if (!labelScore || d.labelScore >= labelScore)
|
||||
return true;
|
||||
this.console.log('Label score too low.', d.labelScore);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!labelDistance)
|
||||
continue;
|
||||
if (levenshteinDistance(label, d.label) <= labelDistance)
|
||||
|
||||
if (levenshteinDistance(label, d.label) > labelDistance) {
|
||||
this.console.log('Label does not match.', label, d.label, d.labelScore);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!labelScore || d.labelScore >= labelScore)
|
||||
return true;
|
||||
this.console.log('Label does not match.', label, d.label);
|
||||
this.console.log('Label score too low.', d.labelScore);
|
||||
}
|
||||
|
||||
return false;
|
||||
|
||||
4
plugins/onnx/package-lock.json
generated
4
plugins/onnx/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@scrypted/openvino",
|
||||
"version": "0.1.88",
|
||||
"version": "0.1.93",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@scrypted/openvino",
|
||||
"version": "0.1.88",
|
||||
"version": "0.1.93",
|
||||
"devDependencies": {
|
||||
"@scrypted/sdk": "file:../../sdk"
|
||||
}
|
||||
|
||||
@@ -42,5 +42,5 @@
|
||||
"devDependencies": {
|
||||
"@scrypted/sdk": "file:../../sdk"
|
||||
},
|
||||
"version": "0.1.88"
|
||||
"version": "0.1.93"
|
||||
}
|
||||
|
||||
@@ -29,15 +29,13 @@ except:
|
||||
|
||||
availableModels = [
|
||||
"Default",
|
||||
"scrypted_yolov10m_320",
|
||||
"scrypted_yolov10n_320",
|
||||
"scrypted_yolo_nas_s_320",
|
||||
"scrypted_yolov6n_320",
|
||||
"scrypted_yolov6n",
|
||||
"scrypted_yolov6s_320",
|
||||
"scrypted_yolov6s",
|
||||
"scrypted_yolov9c_320",
|
||||
"scrypted_yolov9c",
|
||||
"scrypted_yolov8n_320",
|
||||
"scrypted_yolov8n",
|
||||
]
|
||||
|
||||
def parse_labels(names):
|
||||
@@ -59,6 +57,7 @@ class ONNXPlugin(
|
||||
self.storage.setItem("model", "Default")
|
||||
model = "scrypted_yolov8n_320"
|
||||
self.yolo = "yolo" in model
|
||||
self.scrypted_yolov10 = "scrypted_yolov10" in model
|
||||
self.scrypted_yolo_nas = "scrypted_yolo_nas" in model
|
||||
self.scrypted_yolo = "scrypted_yolo" in model
|
||||
self.scrypted_model = "scrypted" in model
|
||||
@@ -92,7 +91,7 @@ class ONNXPlugin(
|
||||
if sys.platform == 'darwin':
|
||||
providers.append("CoreMLExecutionProvider")
|
||||
|
||||
if 'linux' in sys.platform and platform.machine() == 'x86_64':
|
||||
if ('linux' in sys.platform or 'win' in sys.platform) and platform.machine() == 'x86_64':
|
||||
deviceId = int(deviceId)
|
||||
providers.append(("CUDAExecutionProvider", { "device_id": deviceId }))
|
||||
|
||||
@@ -200,6 +199,12 @@ class ONNXPlugin(
|
||||
"multiple": True,
|
||||
"value": deviceIds,
|
||||
},
|
||||
{
|
||||
"key": "execution_device",
|
||||
"title": "Execution Device",
|
||||
"readonly": True,
|
||||
"value": onnxruntime.get_device(),
|
||||
}
|
||||
]
|
||||
|
||||
async def putSetting(self, key: str, value: SettingValue):
|
||||
@@ -228,11 +233,11 @@ class ONNXPlugin(
|
||||
def predict(input_tensor):
|
||||
compiled_model = self.compiled_models[threading.current_thread().name]
|
||||
output_tensors = compiled_model.run(None, { self.input_name: input_tensor })
|
||||
if self.scrypted_yolov10:
|
||||
return yolo.parse_yolov10(output_tensors[0][0])
|
||||
if self.scrypted_yolo_nas:
|
||||
objs = yolo.parse_yolo_nas([output_tensors[1], output_tensors[0]])
|
||||
else:
|
||||
objs = yolo.parse_yolov9(output_tensors[0][0])
|
||||
return objs
|
||||
return yolo.parse_yolo_nas([output_tensors[1], output_tensors[0]])
|
||||
return yolo.parse_yolov9(output_tensors[0][0])
|
||||
|
||||
try:
|
||||
input_tensor = await asyncio.get_event_loop().run_in_executor(
|
||||
|
||||
@@ -62,12 +62,12 @@ class ONNXTextRecognition(TextRecognition):
|
||||
executor = concurrent.futures.ThreadPoolExecutor(
|
||||
initializer=executor_initializer,
|
||||
max_workers=len(compiled_models_array),
|
||||
thread_name_prefix="face",
|
||||
thread_name_prefix="text",
|
||||
)
|
||||
|
||||
prepareExecutor = concurrent.futures.ThreadPoolExecutor(
|
||||
max_workers=len(compiled_models_array),
|
||||
thread_name_prefix="face-prepare",
|
||||
thread_name_prefix="text-prepare",
|
||||
)
|
||||
|
||||
return compiled_models, input_name, prepareExecutor, executor
|
||||
|
||||
4
plugins/openvino/.vscode/settings.json
vendored
4
plugins/openvino/.vscode/settings.json
vendored
@@ -4,6 +4,10 @@
|
||||
// "scrypted.debugHost": "koushik-ubuntu",
|
||||
// "scrypted.serverRoot": "/server",
|
||||
|
||||
// proxmox installation
|
||||
// "scrypted.debugHost": "scrypted-server",
|
||||
// "scrypted.serverRoot": "/root/.scrypted",
|
||||
|
||||
// pi local installation
|
||||
// "scrypted.debugHost": "192.168.2.119",
|
||||
// "scrypted.serverRoot": "/home/pi/.scrypted",
|
||||
|
||||
4
plugins/openvino/package-lock.json
generated
4
plugins/openvino/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@scrypted/openvino",
|
||||
"version": "0.1.86",
|
||||
"version": "0.1.89",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@scrypted/openvino",
|
||||
"version": "0.1.86",
|
||||
"version": "0.1.89",
|
||||
"devDependencies": {
|
||||
"@scrypted/sdk": "file:../../sdk"
|
||||
}
|
||||
|
||||
@@ -42,5 +42,5 @@
|
||||
"devDependencies": {
|
||||
"@scrypted/sdk": "file:../../sdk"
|
||||
},
|
||||
"version": "0.1.86"
|
||||
"version": "0.1.89"
|
||||
}
|
||||
|
||||
@@ -6,6 +6,38 @@ from predict.rectangle import Rectangle
|
||||
|
||||
defaultThreshold = .2
|
||||
|
||||
def parse_yolov10(results, threshold = defaultThreshold, scale = None, confidence_scale = None):
|
||||
objs: list[Prediction] = []
|
||||
keep = np.argwhere(results[4:] > threshold)
|
||||
for indices in keep:
|
||||
class_id = indices[0]
|
||||
index = indices[1]
|
||||
confidence = results[class_id + 4, index].astype(float)
|
||||
l = results[0][index].astype(float)
|
||||
t = results[1][index].astype(float)
|
||||
r = results[2][index].astype(float)
|
||||
b = results[3][index].astype(float)
|
||||
if scale:
|
||||
l = scale(l)
|
||||
t = scale(t)
|
||||
r = scale(r)
|
||||
b = scale(b)
|
||||
if confidence_scale:
|
||||
confidence = confidence_scale(confidence)
|
||||
obj = Prediction(
|
||||
int(class_id),
|
||||
confidence,
|
||||
Rectangle(
|
||||
l,
|
||||
t,
|
||||
r,
|
||||
b,
|
||||
),
|
||||
)
|
||||
objs.append(obj)
|
||||
|
||||
return objs
|
||||
|
||||
def parse_yolo_nas(predictions):
|
||||
objs = []
|
||||
for pred_scores, pred_bboxes in zip(*predictions):
|
||||
@@ -21,7 +53,7 @@ def parse_yolo_nas(predictions):
|
||||
return objs
|
||||
|
||||
def parse_yolov9(results, threshold = defaultThreshold, scale = None, confidence_scale = None):
|
||||
objs = []
|
||||
objs: list[Prediction] = []
|
||||
keep = np.argwhere(results[4:] > threshold)
|
||||
for indices in keep:
|
||||
class_id = indices[0]
|
||||
|
||||
@@ -30,15 +30,13 @@ prepareExecutor = concurrent.futures.ThreadPoolExecutor(1, "OpenVINO-Prepare")
|
||||
|
||||
availableModels = [
|
||||
"Default",
|
||||
"scrypted_yolov10m_320",
|
||||
"scrypted_yolov10n_320",
|
||||
"scrypted_yolo_nas_s_320",
|
||||
"scrypted_yolov6n_320",
|
||||
"scrypted_yolov6n",
|
||||
"scrypted_yolov6s_320",
|
||||
"scrypted_yolov6s",
|
||||
"scrypted_yolov9c_320",
|
||||
"scrypted_yolov9c",
|
||||
"scrypted_yolov8n_320",
|
||||
"scrypted_yolov8n",
|
||||
"ssd_mobilenet_v1_coco",
|
||||
"ssdlite_mobilenet_v2",
|
||||
"yolo-v3-tiny-tf",
|
||||
@@ -138,6 +136,7 @@ class OpenVINOPlugin(
|
||||
self.storage.setItem("model", "Default")
|
||||
model = "scrypted_yolov8n_320"
|
||||
self.yolo = "yolo" in model
|
||||
self.scrypted_yolov10 = "scrypted_yolov10" in model
|
||||
self.scrypted_yolo_nas = "scrypted_yolo_nas" in model
|
||||
self.scrypted_yolo = "scrypted_yolo" in model
|
||||
self.scrypted_model = "scrypted" in model
|
||||
@@ -274,11 +273,11 @@ class OpenVINOPlugin(
|
||||
objs = []
|
||||
|
||||
if self.scrypted_yolo:
|
||||
if self.scrypted_yolov10:
|
||||
return yolo.parse_yolov10(output_tensors[0][0])
|
||||
if self.scrypted_yolo_nas:
|
||||
objs = yolo.parse_yolo_nas([output_tensors[1], output_tensors[0]])
|
||||
else:
|
||||
objs = yolo.parse_yolov9(output_tensors[0][0])
|
||||
return objs
|
||||
return yolo.parse_yolo_nas([output_tensors[1], output_tensors[0]])
|
||||
return yolo.parse_yolov9(output_tensors[0][0])
|
||||
|
||||
if self.yolo:
|
||||
# index 2 will always either be 13 or 26
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
import asyncio
|
||||
import concurrent.futures
|
||||
|
||||
async def start_async(infer_request):
|
||||
future = asyncio.Future(loop = asyncio.get_event_loop())
|
||||
def callback(status = None, result = None):
|
||||
future.set_result(None)
|
||||
infer_request.set_callback(callback, None)
|
||||
infer_request.start_async()
|
||||
await future
|
||||
|
||||
def create_executors(name: str):
|
||||
prepare = concurrent.futures.ThreadPoolExecutor(1, "OpenVINO-{f}Prepare")
|
||||
predict = concurrent.futures.ThreadPoolExecutor(1, "OpenVINO-{f}}Predict")
|
||||
return prepare, predict
|
||||
|
||||
@@ -1,13 +1,20 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import openvino.runtime as ov
|
||||
from ov import async_infer
|
||||
from PIL import Image
|
||||
import asyncio
|
||||
|
||||
import numpy as np
|
||||
import openvino.runtime as ov
|
||||
from PIL import Image
|
||||
|
||||
from ov import async_infer
|
||||
from predict.face_recognize import FaceRecognizeDetection
|
||||
|
||||
faceDetectPrepare, faceDetectPredict = async_infer.create_executors("FaceDetect")
|
||||
faceRecognizePrepare, faceRecognizePredict = async_infer.create_executors(
|
||||
"FaceRecognize"
|
||||
)
|
||||
|
||||
|
||||
class OpenVINOFaceRecognition(FaceRecognizeDetection):
|
||||
def __init__(self, plugin, nativeId: str | None = None):
|
||||
self.plugin = plugin
|
||||
@@ -30,19 +37,34 @@ class OpenVINOFaceRecognition(FaceRecognizeDetection):
|
||||
return self.plugin.core.compile_model(xmlFile, self.plugin.mode)
|
||||
|
||||
async def predictDetectModel(self, input: Image.Image):
|
||||
infer_request = self.detectModel.create_infer_request()
|
||||
im = np.expand_dims(input, axis=0)
|
||||
im = im.transpose((0, 3, 1, 2)) # BHWC to BCHW, (n, 3, h, w)
|
||||
im = im.astype(np.float32) / 255.0
|
||||
im = np.ascontiguousarray(im) # contiguous
|
||||
im = ov.Tensor(array=im)
|
||||
infer_request.set_input_tensor(im)
|
||||
await async_infer.start_async(infer_request)
|
||||
return infer_request.output_tensors[0].data[0]
|
||||
def predict():
|
||||
im = np.expand_dims(input, axis=0)
|
||||
im = im.transpose((0, 3, 1, 2)) # BHWC to BCHW, (n, 3, h, w)
|
||||
im = im.astype(np.float32) / 255.0
|
||||
im = np.ascontiguousarray(im) # contiguous
|
||||
|
||||
infer_request = self.detectModel.create_infer_request()
|
||||
tensor = ov.Tensor(array=im)
|
||||
infer_request.set_input_tensor(tensor)
|
||||
output_tensors = infer_request.infer()
|
||||
ret = output_tensors[0][0]
|
||||
return ret
|
||||
|
||||
ret = await asyncio.get_event_loop().run_in_executor(
|
||||
faceDetectPredict, lambda: predict()
|
||||
)
|
||||
return ret
|
||||
|
||||
async def predictFaceModel(self, input: np.ndarray):
|
||||
im = ov.Tensor(array=input)
|
||||
infer_request = self.faceModel.create_infer_request()
|
||||
infer_request.set_input_tensor(im)
|
||||
await async_infer.start_async(infer_request)
|
||||
return infer_request.output_tensors[0].data[0]
|
||||
def predict():
|
||||
im = ov.Tensor(array=input)
|
||||
infer_request = self.faceModel.create_infer_request()
|
||||
infer_request.set_input_tensor(im)
|
||||
output_tensors = infer_request.infer()
|
||||
ret = output_tensors[0]
|
||||
return ret
|
||||
|
||||
ret = await asyncio.get_event_loop().run_in_executor(
|
||||
faceRecognizePredict, lambda: predict()
|
||||
)
|
||||
return ret
|
||||
|
||||
@@ -1,11 +1,18 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
|
||||
import numpy as np
|
||||
import openvino.runtime as ov
|
||||
from ov import async_infer
|
||||
|
||||
from ov import async_infer
|
||||
from predict.text_recognize import TextRecognition
|
||||
|
||||
textDetectPrepare, textDetectPredict = async_infer.create_executors("TextDetect")
|
||||
textRecognizePrepare, textRecognizePredict = async_infer.create_executors(
|
||||
"TextRecognize"
|
||||
)
|
||||
|
||||
|
||||
class OpenVINOTextRecognition(TextRecognition):
|
||||
def __init__(self, plugin, nativeId: str | None = None):
|
||||
@@ -29,17 +36,30 @@ class OpenVINOTextRecognition(TextRecognition):
|
||||
return self.plugin.core.compile_model(xmlFile, self.plugin.mode)
|
||||
|
||||
async def predictDetectModel(self, input: np.ndarray):
|
||||
infer_request = self.detectModel.create_infer_request()
|
||||
im = ov.Tensor(array=input)
|
||||
input_tensor = im
|
||||
infer_request.set_input_tensor(input_tensor)
|
||||
await async_infer.start_async(infer_request)
|
||||
return infer_request.output_tensors[0].data
|
||||
def predict():
|
||||
infer_request = self.detectModel.create_infer_request()
|
||||
im = ov.Tensor(array=input)
|
||||
input_tensor = im
|
||||
infer_request.set_input_tensor(input_tensor)
|
||||
output_tensors = infer_request.infer()
|
||||
ret = output_tensors[0]
|
||||
return ret
|
||||
|
||||
ret = await asyncio.get_event_loop().run_in_executor(
|
||||
textDetectPredict, lambda: predict()
|
||||
)
|
||||
return ret
|
||||
|
||||
async def predictTextModel(self, input: np.ndarray):
|
||||
input = input.astype(np.float32)
|
||||
im = ov.Tensor(array=input)
|
||||
infer_request = self.textModel.create_infer_request()
|
||||
infer_request.set_input_tensor(im)
|
||||
await async_infer.start_async(infer_request)
|
||||
return infer_request.output_tensors[0].data
|
||||
def predict():
|
||||
im = ov.Tensor(array=input.astype(np.float32))
|
||||
infer_request = self.textModel.create_infer_request()
|
||||
infer_request.set_input_tensor(im)
|
||||
output_tensors = infer_request.infer()
|
||||
ret = output_tensors[0]
|
||||
return ret
|
||||
|
||||
ret = await asyncio.get_event_loop().run_in_executor(
|
||||
textDetectPredict, lambda: predict()
|
||||
)
|
||||
return ret
|
||||
|
||||
4
plugins/prebuffer-mixin/package-lock.json
generated
4
plugins/prebuffer-mixin/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@scrypted/prebuffer-mixin",
|
||||
"version": "0.10.18",
|
||||
"version": "0.10.23",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@scrypted/prebuffer-mixin",
|
||||
"version": "0.10.18",
|
||||
"version": "0.10.23",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@scrypted/common": "file:../../common",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@scrypted/prebuffer-mixin",
|
||||
"version": "0.10.18",
|
||||
"version": "0.10.23",
|
||||
"description": "Video Stream Rebroadcast, Prebuffer, and Management Plugin for Scrypted.",
|
||||
"author": "Scrypted",
|
||||
"license": "Apache-2.0",
|
||||
|
||||
@@ -1,15 +1,13 @@
|
||||
import { cloneDeep } from '@scrypted/common/src/clone-deep';
|
||||
import { Deferred } from "@scrypted/common/src/deferred";
|
||||
import { listenZeroSingleClient } from '@scrypted/common/src/listen-cluster';
|
||||
import { ffmpegLogInitialOutput, safeKillFFmpeg, safePrintFFmpegArguments } from '@scrypted/common/src/media-helpers';
|
||||
import { createRtspParser } from "@scrypted/common/src/rtsp-server";
|
||||
import { parseSdp } from "@scrypted/common/src/sdp-utils";
|
||||
import { StreamChunk, StreamParser } from '@scrypted/common/src/stream-parser';
|
||||
import sdk, { FFmpegInput, RequestMediaStreamOptions, ResponseMediaStreamOptions } from "@scrypted/sdk";
|
||||
import child_process, { ChildProcess, StdioOptions } from 'child_process';
|
||||
import { EventEmitter } from 'events';
|
||||
import { Server } from 'net';
|
||||
import { Duplex } from 'stream';
|
||||
import { cloneDeep } from './clone-deep';
|
||||
import { Deferred } from "./deferred";
|
||||
import { listenZeroSingleClient } from './listen-cluster';
|
||||
import { ffmpegLogInitialOutput, safeKillFFmpeg, safePrintFFmpegArguments } from './media-helpers';
|
||||
import { createRtspParser } from "./rtsp-server";
|
||||
import { parseSdp } from "./sdp-utils";
|
||||
import { StreamChunk, StreamParser } from './stream-parser';
|
||||
|
||||
const { mediaManager } = sdk;
|
||||
|
||||
@@ -339,64 +337,3 @@ export async function startParserSession<T extends string>(ffmpegInput: FFmpegIn
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
export interface Rebroadcaster {
|
||||
server: Server;
|
||||
port: number;
|
||||
url: string;
|
||||
clients: number;
|
||||
}
|
||||
|
||||
export interface RebroadcastSessionCleanup {
|
||||
(): void;
|
||||
}
|
||||
|
||||
export interface RebroadcasterConnection {
|
||||
writeData: (data: StreamChunk) => number;
|
||||
destroy: () => void;
|
||||
}
|
||||
|
||||
export interface RebroadcasterOptions {
|
||||
connect?: (connection: RebroadcasterConnection) => RebroadcastSessionCleanup | undefined;
|
||||
console?: Console;
|
||||
idle?: {
|
||||
timeout: number,
|
||||
callback: () => void,
|
||||
},
|
||||
}
|
||||
|
||||
export function handleRebroadcasterClient(socket: Duplex, options?: RebroadcasterOptions) {
|
||||
const firstWriteData = (data: StreamChunk) => {
|
||||
if (data.startStream) {
|
||||
socket.write(data.startStream)
|
||||
}
|
||||
connection.writeData = writeData;
|
||||
return writeData(data);
|
||||
}
|
||||
const writeData = (data: StreamChunk) => {
|
||||
for (const chunk of data.chunks) {
|
||||
socket.write(chunk);
|
||||
}
|
||||
|
||||
return socket.writableLength;
|
||||
};
|
||||
|
||||
const destroy = () => {
|
||||
const cb = cleanupCallback;
|
||||
cleanupCallback = undefined;
|
||||
socket.destroy();
|
||||
cb?.();
|
||||
}
|
||||
|
||||
const connection: RebroadcasterConnection = {
|
||||
writeData: firstWriteData,
|
||||
destroy,
|
||||
};
|
||||
|
||||
let cleanupCallback = options?.connect(connection);
|
||||
|
||||
socket.once('close', () => {
|
||||
destroy();
|
||||
});
|
||||
socket.on('error', e => options?.console?.log('client stream ended'));
|
||||
}
|
||||
@@ -1,8 +1,6 @@
|
||||
import path from 'path'
|
||||
import { AutoenableMixinProvider } from '@scrypted/common/src/autoenable-mixin-provider';
|
||||
import { getDebugModeH264EncoderArgs, getH264EncoderArgs } from '@scrypted/common/src/ffmpeg-hardware-acceleration';
|
||||
import { addVideoFilterArguments } from '@scrypted/common/src/ffmpeg-helpers';
|
||||
import { ParserOptions, ParserSession, handleRebroadcasterClient, startParserSession } from '@scrypted/common/src/ffmpeg-rebroadcast';
|
||||
import { ListenZeroSingleClientTimeoutError, closeQuiet, listenZeroSingleClient } from '@scrypted/common/src/listen-cluster';
|
||||
import { readLength } from '@scrypted/common/src/read-stream';
|
||||
import { H264_NAL_TYPE_FU_B, H264_NAL_TYPE_IDR, H264_NAL_TYPE_MTAP16, H264_NAL_TYPE_MTAP32, H264_NAL_TYPE_RESERVED0, H264_NAL_TYPE_RESERVED30, H264_NAL_TYPE_RESERVED31, H264_NAL_TYPE_SEI, H264_NAL_TYPE_STAP_B, RtspServer, RtspTrack, createRtspParser, findH264NaluType, getNaluTypes, listenSingleRtspClient } from '@scrypted/common/src/rtsp-server';
|
||||
@@ -10,14 +8,16 @@ import { addTrackControls, parseSdp } from '@scrypted/common/src/sdp-utils';
|
||||
import { SettingsMixinDeviceBase, SettingsMixinDeviceOptions } from "@scrypted/common/src/settings-mixin";
|
||||
import { sleep } from '@scrypted/common/src/sleep';
|
||||
import { StreamChunk, StreamParser } from '@scrypted/common/src/stream-parser';
|
||||
import sdk, { BufferConverter, ChargeState, DeviceProvider, DeviceState, EventListenerRegister, FFmpegInput, H264Info, MediaObject, MediaStreamDestination, MediaStreamOptions, MixinProvider, RequestMediaStreamOptions, ResponseMediaStreamOptions, ScryptedDevice, ScryptedDeviceType, ScryptedInterface, ScryptedMimeTypes, Setting, SettingValue, Settings, VideoCamera, VideoCameraConfiguration, WritableDeviceState } from '@scrypted/sdk';
|
||||
import sdk, { BufferConverter, ChargeState, DeviceProvider, EventListenerRegister, FFmpegInput, H264Info, MediaObject, MediaStreamDestination, MediaStreamOptions, MixinProvider, RequestMediaStreamOptions, ResponseMediaStreamOptions, ScryptedDevice, ScryptedDeviceType, ScryptedInterface, ScryptedMimeTypes, Setting, SettingValue, Settings, VideoCamera, VideoCameraConfiguration, WritableDeviceState } from '@scrypted/sdk';
|
||||
import { StorageSettings } from '@scrypted/sdk/storage-settings';
|
||||
import crypto from 'crypto';
|
||||
import { once } from 'events';
|
||||
import net, { AddressInfo } from 'net';
|
||||
import path from 'path';
|
||||
import semver from 'semver';
|
||||
import { Duplex } from 'stream';
|
||||
import { Worker } from 'worker_threads';
|
||||
import { ParserOptions, ParserSession, startParserSession } from './ffmpeg-rebroadcast';
|
||||
import { FileRtspServer } from './file-rtsp-server';
|
||||
import { getUrlLocalAdresses } from './local-addresses';
|
||||
import { REBROADCAST_MIXIN_INTERFACE_TOKEN } from './rebroadcast-mixin-token';
|
||||
@@ -41,13 +41,6 @@ interface PrebufferStreamChunk extends StreamChunk {
|
||||
time?: number;
|
||||
}
|
||||
|
||||
type Prebuffers<T extends string> = {
|
||||
[key in T]: PrebufferStreamChunk[];
|
||||
}
|
||||
|
||||
type PrebufferParsers = 'rtsp';
|
||||
const PrebufferParserValues: PrebufferParsers[] = ['rtsp'];
|
||||
|
||||
function hasOddities(h264Info: H264Info) {
|
||||
const h264Oddities = h264Info.fuab
|
||||
|| h264Info.mtap16
|
||||
@@ -60,13 +53,13 @@ function hasOddities(h264Info: H264Info) {
|
||||
return h264Oddities;
|
||||
}
|
||||
|
||||
type PrebufferParsers = 'rtsp';
|
||||
|
||||
class PrebufferSession {
|
||||
|
||||
parserSessionPromise: Promise<ParserSession<PrebufferParsers>>;
|
||||
parserSession: ParserSession<PrebufferParsers>;
|
||||
prebuffers: Prebuffers<PrebufferParsers> = {
|
||||
rtsp: [],
|
||||
};
|
||||
rtspPrebuffer: PrebufferStreamChunk[] = []
|
||||
parsers: { [container: string]: StreamParser };
|
||||
sdp: Promise<string>;
|
||||
usingScryptedParser = false;
|
||||
@@ -148,10 +141,10 @@ class PrebufferSession {
|
||||
|
||||
getDetectedIdrInterval() {
|
||||
const durations: number[] = [];
|
||||
if (this.prebuffers.rtsp.length) {
|
||||
if (this.rtspPrebuffer.length) {
|
||||
let last: number;
|
||||
|
||||
for (const chunk of this.prebuffers.rtsp) {
|
||||
for (const chunk of this.rtspPrebuffer) {
|
||||
if (findH264NaluType(chunk, H264_NAL_TYPE_IDR)) {
|
||||
if (last)
|
||||
durations.push(chunk.time - last);
|
||||
@@ -176,9 +169,7 @@ class PrebufferSession {
|
||||
}
|
||||
|
||||
clearPrebuffers() {
|
||||
for (const prebuffer of PrebufferParserValues) {
|
||||
this.prebuffers[prebuffer] = [];
|
||||
}
|
||||
this.rtspPrebuffer = [];
|
||||
}
|
||||
|
||||
release() {
|
||||
@@ -251,7 +242,7 @@ class PrebufferSession {
|
||||
|
||||
let total = 0;
|
||||
let start = 0;
|
||||
for (const prebuffer of this.prebuffers.rtsp) {
|
||||
for (const prebuffer of this.rtspPrebuffer) {
|
||||
start = start || prebuffer.time;
|
||||
for (const chunk of prebuffer.chunks) {
|
||||
total += chunk.byteLength;
|
||||
@@ -685,11 +676,10 @@ class PrebufferSession {
|
||||
session.killed.finally(() => clearTimeout(refreshTimeout));
|
||||
}
|
||||
|
||||
for (const container of PrebufferParserValues) {
|
||||
let shifts = 0;
|
||||
let prebufferContainer: PrebufferStreamChunk[] = this.prebuffers[container];
|
||||
let prebufferContainer: PrebufferStreamChunk[] = this.rtspPrebuffer;
|
||||
|
||||
session.on(container, (chunk: PrebufferStreamChunk) => {
|
||||
session.on('rtsp', (chunk: PrebufferStreamChunk) => {
|
||||
const now = Date.now();
|
||||
|
||||
chunk.time = now;
|
||||
@@ -702,11 +692,10 @@ class PrebufferSession {
|
||||
|
||||
if (shifts > 100000) {
|
||||
prebufferContainer = prebufferContainer.slice();
|
||||
this.prebuffers[container] = prebufferContainer;
|
||||
this.rtspPrebuffer = prebufferContainer;
|
||||
shifts = 0;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
session.start();
|
||||
return session;
|
||||
@@ -783,19 +772,24 @@ class PrebufferSession {
|
||||
async handleRebroadcasterClient(options: {
|
||||
findSyncFrame: boolean,
|
||||
isActiveClient: boolean,
|
||||
container: PrebufferParsers,
|
||||
session: ParserSession<PrebufferParsers>,
|
||||
socketPromise: Promise<Duplex>,
|
||||
requestedPrebuffer: number,
|
||||
filter?: (chunk: StreamChunk, prebuffer: boolean) => StreamChunk,
|
||||
}) {
|
||||
const { isActiveClient, container, session, socketPromise, requestedPrebuffer } = options;
|
||||
const { isActiveClient, session, socketPromise, requestedPrebuffer } = options;
|
||||
this.console.log('sending prebuffer', requestedPrebuffer);
|
||||
|
||||
let socket: Duplex;
|
||||
|
||||
try {
|
||||
socket = await socketPromise;
|
||||
|
||||
if (!session.isActive) {
|
||||
// session may be killed while waiting for socket.
|
||||
socket.destroy();
|
||||
throw new Error('session terminated before socket connected');
|
||||
}
|
||||
}
|
||||
catch (e) {
|
||||
// in case the client never connects, do an inactivity check.
|
||||
@@ -820,70 +814,81 @@ class PrebufferSession {
|
||||
this.inactivityCheck(session, isActiveClient);
|
||||
});
|
||||
|
||||
handleRebroadcasterClient(socket, {
|
||||
// console: this.console,
|
||||
connect: (connection) => {
|
||||
const now = Date.now();
|
||||
|
||||
const safeWriteData = (chunk: StreamChunk, prebuffer?: boolean) => {
|
||||
if (options.filter) {
|
||||
chunk = options.filter(chunk, prebuffer);
|
||||
if (!chunk)
|
||||
return;
|
||||
}
|
||||
const buffered = connection.writeData(chunk);
|
||||
if (buffered > 100000000) {
|
||||
this.console.log('more than 100MB has been buffered, did downstream die? killing connection.', this.streamName);
|
||||
cleanup();
|
||||
}
|
||||
}
|
||||
|
||||
const cleanup = () => {
|
||||
session.removeListener(container, safeWriteData);
|
||||
session.removeListener('killed', cleanup);
|
||||
connection.destroy();
|
||||
}
|
||||
|
||||
session.on(container, safeWriteData);
|
||||
session.once('killed', cleanup);
|
||||
|
||||
const prebufferContainer: PrebufferStreamChunk[] = this.prebuffers[container];
|
||||
// if the requested container or the source container is not rtsp, use an exact seek.
|
||||
// this works better when the requested container is mp4, and rtsp is the source.
|
||||
// if starting on a sync frame, ffmpeg will skip the first segment while initializing
|
||||
// on live sources like rtsp. the buffer before the sync frame stream will be enough
|
||||
// for ffmpeg to analyze and start up in time for the sync frame.
|
||||
// may be worth considering playing with a few other things to avoid this:
|
||||
// mpeg-ts as a container (would need to write a muxer)
|
||||
// specifying the buffer before the sync frame with probesize.
|
||||
// If h264 oddities are detected, assume ffmpeg will be used.
|
||||
if (container !== 'rtsp' || !options.findSyncFrame || this.getLastH264Oddities()) {
|
||||
for (const chunk of prebufferContainer) {
|
||||
if (chunk.time < now - requestedPrebuffer)
|
||||
continue;
|
||||
|
||||
safeWriteData(chunk, true);
|
||||
}
|
||||
}
|
||||
else {
|
||||
const parser = this.parsers[container];
|
||||
const filtered = prebufferContainer.filter(pb => pb.time >= now - requestedPrebuffer);
|
||||
let availablePrebuffers = parser.findSyncFrame(filtered);
|
||||
if (!availablePrebuffers) {
|
||||
this.console.warn('Unable to find sync frame in rtsp prebuffer.');
|
||||
availablePrebuffers = [];
|
||||
}
|
||||
else {
|
||||
this.console.log('Found sync frame in rtsp prebuffer.');
|
||||
}
|
||||
for (const prebuffer of availablePrebuffers) {
|
||||
safeWriteData(prebuffer, true);
|
||||
}
|
||||
}
|
||||
|
||||
return cleanup;
|
||||
let writeData = (data: StreamChunk): number => {
|
||||
if (data.startStream) {
|
||||
socket.write(data.startStream)
|
||||
}
|
||||
})
|
||||
|
||||
const writeDataWithoutStartStream = (data: StreamChunk) => {
|
||||
for (const chunk of data.chunks) {
|
||||
socket.write(chunk);
|
||||
}
|
||||
|
||||
return socket.writableLength;
|
||||
};
|
||||
|
||||
writeData = writeDataWithoutStartStream;
|
||||
return writeDataWithoutStartStream(data);
|
||||
}
|
||||
|
||||
const safeWriteData = (chunk: StreamChunk, prebuffer?: boolean) => {
|
||||
if (options.filter) {
|
||||
chunk = options.filter(chunk, prebuffer);
|
||||
if (!chunk)
|
||||
return;
|
||||
}
|
||||
const buffered = writeData(chunk);
|
||||
if (buffered > 100000000) {
|
||||
this.console.log('more than 100MB has been buffered, did downstream die? killing connection.', this.streamName);
|
||||
cleanup();
|
||||
}
|
||||
}
|
||||
|
||||
const cleanup = () => {
|
||||
socket.destroy();
|
||||
session.removeListener('rtsp', safeWriteData);
|
||||
session.removeListener('killed', cleanup);
|
||||
};
|
||||
|
||||
session.on('rtsp', safeWriteData);
|
||||
session.once('killed', cleanup);
|
||||
|
||||
socket.once('close', () => {
|
||||
cleanup();
|
||||
});
|
||||
|
||||
// socket.on('error', e => this.console.log('client stream ended'));
|
||||
|
||||
|
||||
const now = Date.now();
|
||||
const prebufferContainer: PrebufferStreamChunk[] = this.rtspPrebuffer;
|
||||
// if starting on a sync frame, ffmpeg will skip the first segment while initializing
|
||||
// on live sources like rtsp. the buffer before the sync frame stream will be enough
|
||||
// for ffmpeg to analyze and start up in time for the sync frame.
|
||||
// If h264 oddities are detected, assume ffmpeg will be used.
|
||||
if (!options.findSyncFrame || this.getLastH264Oddities()) {
|
||||
for (const chunk of prebufferContainer) {
|
||||
if (chunk.time < now - requestedPrebuffer)
|
||||
continue;
|
||||
|
||||
safeWriteData(chunk, true);
|
||||
}
|
||||
}
|
||||
else {
|
||||
const parser = this.parsers['rtsp'];
|
||||
const filtered = prebufferContainer.filter(pb => pb.time >= now - requestedPrebuffer);
|
||||
let availablePrebuffers = parser.findSyncFrame(filtered);
|
||||
if (!availablePrebuffers) {
|
||||
this.console.warn('Unable to find sync frame in rtsp prebuffer.');
|
||||
availablePrebuffers = [];
|
||||
}
|
||||
else {
|
||||
this.console.log('Found sync frame in rtsp prebuffer.');
|
||||
}
|
||||
for (const prebuffer of availablePrebuffers) {
|
||||
safeWriteData(prebuffer, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async getVideoStream(findSyncFrame: boolean, options?: RequestMediaStreamOptions) {
|
||||
@@ -1010,8 +1015,6 @@ class PrebufferSession {
|
||||
urls = await getUrlLocalAdresses(this.console, url);
|
||||
}
|
||||
|
||||
const container = 'rtsp';
|
||||
|
||||
mediaStreamOptions.sdp = sdp;
|
||||
|
||||
const isActiveClient = options?.refresh !== false;
|
||||
@@ -1019,7 +1022,6 @@ class PrebufferSession {
|
||||
this.handleRebroadcasterClient({
|
||||
findSyncFrame,
|
||||
isActiveClient,
|
||||
container,
|
||||
requestedPrebuffer,
|
||||
socketPromise,
|
||||
session,
|
||||
@@ -1045,7 +1047,7 @@ class PrebufferSession {
|
||||
|
||||
const now = Date.now();
|
||||
let available = 0;
|
||||
const prebufferContainer: PrebufferStreamChunk[] = this.prebuffers[container];
|
||||
const prebufferContainer: PrebufferStreamChunk[] = this.rtspPrebuffer;
|
||||
for (const prebuffer of prebufferContainer) {
|
||||
if (prebuffer.time < now - requestedPrebuffer)
|
||||
continue;
|
||||
@@ -1066,11 +1068,11 @@ class PrebufferSession {
|
||||
const ffmpegInput: FFmpegInput = {
|
||||
url,
|
||||
urls,
|
||||
container,
|
||||
container: 'rtsp',
|
||||
inputArguments: [
|
||||
...inputArguments,
|
||||
...(this.parsers[container].inputArguments || []),
|
||||
'-f', this.parsers[container].container,
|
||||
...(this.parsers['rtsp'].inputArguments || []),
|
||||
'-f', this.parsers['rtsp'].container,
|
||||
'-i', url,
|
||||
],
|
||||
mediaStreamOptions,
|
||||
@@ -1165,7 +1167,6 @@ class PrebufferMixin extends SettingsMixinDeviceBase<VideoCamera> implements Vid
|
||||
prebufferSession.handleRebroadcasterClient({
|
||||
findSyncFrame: true,
|
||||
isActiveClient: true,
|
||||
container: 'rtsp',
|
||||
session,
|
||||
socketPromise: Promise.resolve(client),
|
||||
requestedPrebuffer,
|
||||
|
||||
@@ -1,14 +1,13 @@
|
||||
import { cloneDeep } from "@scrypted/common/src/clone-deep";
|
||||
import { ParserOptions, ParserSession, setupActivityTimer } from "@scrypted/common/src/ffmpeg-rebroadcast";
|
||||
import { read16BELengthLoop } from "@scrypted/common/src/read-stream";
|
||||
import { findH264NaluType, H264_NAL_TYPE_SPS, RTSP_FRAME_MAGIC } from "@scrypted/common/src/rtsp-server";
|
||||
import { H264_NAL_TYPE_SPS, RTSP_FRAME_MAGIC, findH264NaluType } from "@scrypted/common/src/rtsp-server";
|
||||
import { parseSdp } from "@scrypted/common/src/sdp-utils";
|
||||
import { sleep } from "@scrypted/common/src/sleep";
|
||||
import { StreamChunk } from "@scrypted/common/src/stream-parser";
|
||||
import { MediaStreamOptions, ResponseMediaStreamOptions } from "@scrypted/sdk";
|
||||
import { parse as spsParse } from "h264-sps-parser";
|
||||
import net from 'net';
|
||||
import { EventEmitter, Readable } from "stream";
|
||||
import { ParserSession, setupActivityTimer } from "./ffmpeg-rebroadcast";
|
||||
import { getSpsResolution } from "./sps-resolution";
|
||||
|
||||
export function negotiateMediaStream(sdp: string, mediaStreamOptions: MediaStreamOptions, inputVideoCodec: string, inputAudioCodec: string, requestMediaStream: MediaStreamOptions) {
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
import { ParserSession, setupActivityTimer } from "@scrypted/common/src/ffmpeg-rebroadcast";
|
||||
import { closeQuiet, createBindZero } from "@scrypted/common/src/listen-cluster";
|
||||
import { findH264NaluType, H264_NAL_TYPE_SPS, parseSemicolonDelimited, RtspClient, RtspClientUdpSetupOptions, RTSP_FRAME_MAGIC } from "@scrypted/common/src/rtsp-server";
|
||||
import { closeQuiet } from "@scrypted/common/src/listen-cluster";
|
||||
import { H264_NAL_TYPE_SPS, RTSP_FRAME_MAGIC, RtspClient, RtspClientUdpSetupOptions, findH264NaluType, parseSemicolonDelimited } from "@scrypted/common/src/rtsp-server";
|
||||
import { parseSdp } from "@scrypted/common/src/sdp-utils";
|
||||
import { StreamChunk } from "@scrypted/common/src/stream-parser";
|
||||
import { ResponseMediaStreamOptions } from "@scrypted/sdk";
|
||||
import dgram from 'dgram';
|
||||
import { parse as spsParse } from "h264-sps-parser";
|
||||
import { EventEmitter } from "stream";
|
||||
import { ParserSession, setupActivityTimer } from "./ffmpeg-rebroadcast";
|
||||
import { negotiateMediaStream } from "./rfc4571";
|
||||
import { getSpsResolution } from "./sps-resolution";
|
||||
|
||||
|
||||
6
plugins/rknn/package-lock.json
generated
6
plugins/rknn/package-lock.json
generated
@@ -1,19 +1,19 @@
|
||||
{
|
||||
"name": "@scrypted/rknn",
|
||||
"version": "0.0.4",
|
||||
"version": "0.1.1",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@scrypted/rknn",
|
||||
"version": "0.0.4",
|
||||
"version": "0.1.1",
|
||||
"devDependencies": {
|
||||
"@scrypted/sdk": "file:../../sdk"
|
||||
}
|
||||
},
|
||||
"../../sdk": {
|
||||
"name": "@scrypted/sdk",
|
||||
"version": "0.3.29",
|
||||
"version": "0.3.31",
|
||||
"dev": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
|
||||
@@ -39,11 +39,12 @@
|
||||
"type": "API",
|
||||
"interfaces": [
|
||||
"ObjectDetection",
|
||||
"ObjectDetectionPreview"
|
||||
"ObjectDetectionPreview",
|
||||
"DeviceProvider"
|
||||
]
|
||||
},
|
||||
"devDependencies": {
|
||||
"@scrypted/sdk": "file:../../sdk"
|
||||
},
|
||||
"version": "0.0.4"
|
||||
"version": "0.1.1"
|
||||
}
|
||||
|
||||
0
plugins/rknn/src/det_utils/__init__.py
Normal file
0
plugins/rknn/src/det_utils/__init__.py
Normal file
269
plugins/rknn/src/det_utils/db_postprocess.py
Normal file
269
plugins/rknn/src/det_utils/db_postprocess.py
Normal file
@@ -0,0 +1,269 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refered from:
|
||||
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
# import paddle
|
||||
from shapely.geometry import Polygon
|
||||
import pyclipper
|
||||
|
||||
|
||||
class DBPostProcess(object):
|
||||
"""
|
||||
The post process for Differentiable Binarization (DB).
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
thresh=0.3,
|
||||
box_thresh=0.7,
|
||||
max_candidates=1000,
|
||||
unclip_ratio=2.0,
|
||||
use_dilation=False,
|
||||
score_mode="fast",
|
||||
**kwargs):
|
||||
self.thresh = thresh
|
||||
self.box_thresh = box_thresh
|
||||
self.max_candidates = max_candidates
|
||||
self.unclip_ratio = unclip_ratio
|
||||
self.min_size = 3
|
||||
self.score_mode = score_mode
|
||||
assert score_mode in [
|
||||
"slow", "fast"
|
||||
], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
|
||||
|
||||
self.dilation_kernel = None if not use_dilation else np.array(
|
||||
[[1, 1], [1, 1]])
|
||||
|
||||
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
|
||||
'''
|
||||
_bitmap: single map with shape (1, H, W),
|
||||
whose values are binarized as {0, 1}
|
||||
'''
|
||||
|
||||
bitmap = _bitmap
|
||||
height, width = bitmap.shape
|
||||
|
||||
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
|
||||
cv2.CHAIN_APPROX_SIMPLE)
|
||||
if len(outs) == 3:
|
||||
img, contours, _ = outs[0], outs[1], outs[2]
|
||||
elif len(outs) == 2:
|
||||
contours, _ = outs[0], outs[1]
|
||||
|
||||
num_contours = min(len(contours), self.max_candidates)
|
||||
|
||||
boxes = []
|
||||
scores = []
|
||||
for index in range(num_contours):
|
||||
contour = contours[index]
|
||||
points, sside = self.get_mini_boxes(contour)
|
||||
if sside < self.min_size:
|
||||
continue
|
||||
points = np.array(points)
|
||||
if self.score_mode == "fast":
|
||||
score = self.box_score_fast(pred, points.reshape(-1, 2))
|
||||
else:
|
||||
score = self.box_score_slow(pred, contour)
|
||||
if self.box_thresh > score:
|
||||
continue
|
||||
|
||||
box = self.unclip(points).reshape(-1, 1, 2)
|
||||
box, sside = self.get_mini_boxes(box)
|
||||
if sside < self.min_size + 2:
|
||||
continue
|
||||
box = np.array(box)
|
||||
|
||||
box[:, 0] = np.clip(
|
||||
np.round(box[:, 0] / width * dest_width), 0, dest_width)
|
||||
box[:, 1] = np.clip(
|
||||
np.round(box[:, 1] / height * dest_height), 0, dest_height)
|
||||
boxes.append(box.astype(np.int16))
|
||||
scores.append(score)
|
||||
return np.array(boxes, dtype=np.int16), scores
|
||||
|
||||
def unclip(self, box):
|
||||
unclip_ratio = self.unclip_ratio
|
||||
poly = Polygon(box)
|
||||
distance = poly.area * unclip_ratio / poly.length
|
||||
offset = pyclipper.PyclipperOffset()
|
||||
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
||||
expanded = np.array(offset.Execute(distance))
|
||||
return expanded
|
||||
|
||||
def get_mini_boxes(self, contour):
|
||||
bounding_box = cv2.minAreaRect(contour)
|
||||
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
|
||||
|
||||
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
|
||||
if points[1][1] > points[0][1]:
|
||||
index_1 = 0
|
||||
index_4 = 1
|
||||
else:
|
||||
index_1 = 1
|
||||
index_4 = 0
|
||||
if points[3][1] > points[2][1]:
|
||||
index_2 = 2
|
||||
index_3 = 3
|
||||
else:
|
||||
index_2 = 3
|
||||
index_3 = 2
|
||||
|
||||
box = [
|
||||
points[index_1], points[index_2], points[index_3], points[index_4]
|
||||
]
|
||||
return box, min(bounding_box[1])
|
||||
|
||||
def box_score_fast(self, bitmap, _box):
|
||||
'''
|
||||
box_score_fast: use bbox mean score as the mean score
|
||||
'''
|
||||
h, w = bitmap.shape[:2]
|
||||
box = _box.copy()
|
||||
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int32), 0, w - 1)
|
||||
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int32), 0, w - 1)
|
||||
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int32), 0, h - 1)
|
||||
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int32), 0, h - 1)
|
||||
|
||||
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
||||
box[:, 0] = box[:, 0] - xmin
|
||||
box[:, 1] = box[:, 1] - ymin
|
||||
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
|
||||
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
||||
|
||||
def box_score_slow(self, bitmap, contour):
|
||||
'''
|
||||
box_score_slow: use polyon mean score as the mean score
|
||||
'''
|
||||
h, w = bitmap.shape[:2]
|
||||
contour = contour.copy()
|
||||
contour = np.reshape(contour, (-1, 2))
|
||||
|
||||
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
|
||||
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
|
||||
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
|
||||
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
|
||||
|
||||
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
||||
|
||||
contour[:, 0] = contour[:, 0] - xmin
|
||||
contour[:, 1] = contour[:, 1] - ymin
|
||||
|
||||
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
|
||||
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
||||
|
||||
def __call__(self, outs_dict, shape_list):
|
||||
pred = outs_dict['maps']
|
||||
# if isinstance(pred, paddle.Tensor):
|
||||
# pred = pred.numpy()
|
||||
pred = pred[:, 0, :, :]
|
||||
segmentation = pred > self.thresh
|
||||
|
||||
boxes_batch = []
|
||||
for batch_index in range(pred.shape[0]):
|
||||
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
|
||||
if self.dilation_kernel is not None:
|
||||
mask = cv2.dilate(
|
||||
np.array(segmentation[batch_index]).astype(np.uint8),
|
||||
self.dilation_kernel)
|
||||
else:
|
||||
mask = segmentation[batch_index]
|
||||
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
|
||||
src_w, src_h)
|
||||
|
||||
boxes_batch.append({'points': boxes})
|
||||
return boxes_batch
|
||||
|
||||
|
||||
class DistillationDBPostProcess(object):
|
||||
def __init__(self,
|
||||
model_name=["student"],
|
||||
key=None,
|
||||
thresh=0.3,
|
||||
box_thresh=0.6,
|
||||
max_candidates=1000,
|
||||
unclip_ratio=1.5,
|
||||
use_dilation=False,
|
||||
score_mode="fast",
|
||||
**kwargs):
|
||||
self.model_name = model_name
|
||||
self.key = key
|
||||
self.post_process = DBPostProcess(
|
||||
thresh=thresh,
|
||||
box_thresh=box_thresh,
|
||||
max_candidates=max_candidates,
|
||||
unclip_ratio=unclip_ratio,
|
||||
use_dilation=use_dilation,
|
||||
score_mode=score_mode)
|
||||
|
||||
def __call__(self, predicts, shape_list):
|
||||
results = {}
|
||||
for k in self.model_name:
|
||||
results[k] = self.post_process(predicts[k], shape_list=shape_list)
|
||||
return results
|
||||
|
||||
|
||||
class DetPostProcess(object):
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
|
||||
def order_points_clockwise(self, pts):
|
||||
"""
|
||||
reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
|
||||
# sort the points based on their x-coordinates
|
||||
"""
|
||||
xSorted = pts[np.argsort(pts[:, 0]), :]
|
||||
|
||||
# grab the left-most and right-most points from the sorted
|
||||
# x-roodinate points
|
||||
leftMost = xSorted[:2, :]
|
||||
rightMost = xSorted[2:, :]
|
||||
|
||||
# now, sort the left-most coordinates according to their
|
||||
# y-coordinates so we can grab the top-left and bottom-left
|
||||
# points, respectively
|
||||
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
|
||||
(tl, bl) = leftMost
|
||||
|
||||
rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
|
||||
(tr, br) = rightMost
|
||||
|
||||
rect = np.array([tl, tr, br, bl], dtype="float32")
|
||||
return rect
|
||||
|
||||
def clip_det_res(self, points, img_height, img_width):
|
||||
for pno in range(points.shape[0]):
|
||||
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
|
||||
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
|
||||
return points
|
||||
|
||||
def filter_tag_det_res(self, dt_boxes, image_shape):
|
||||
img_height, img_width = image_shape[0:2]
|
||||
dt_boxes_new = []
|
||||
for box in dt_boxes:
|
||||
box = self.order_points_clockwise(box)
|
||||
box = self.clip_det_res(box, img_height, img_width)
|
||||
rect_width = int(np.linalg.norm(box[0] - box[1]))
|
||||
rect_height = int(np.linalg.norm(box[0] - box[3]))
|
||||
if rect_width <= 3 or rect_height <= 3:
|
||||
continue
|
||||
dt_boxes_new.append(box)
|
||||
dt_boxes = np.array(dt_boxes_new)
|
||||
return dt_boxes
|
||||
373
plugins/rknn/src/det_utils/operators.py
Normal file
373
plugins/rknn/src/det_utils/operators.py
Normal file
@@ -0,0 +1,373 @@
|
||||
"""
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import sys
|
||||
import six
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DecodeImage(object):
|
||||
""" decode image """
|
||||
|
||||
def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
|
||||
self.img_mode = img_mode
|
||||
self.channel_first = channel_first
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
if six.PY2:
|
||||
assert type(img) is str and len(
|
||||
img) > 0, "invalid input 'img' in DecodeImage"
|
||||
else:
|
||||
assert type(img) is bytes and len(
|
||||
img) > 0, "invalid input 'img' in DecodeImage"
|
||||
img = np.frombuffer(img, dtype='uint8')
|
||||
img = cv2.imdecode(img, 1)
|
||||
if img is None:
|
||||
return None
|
||||
if self.img_mode == 'GRAY':
|
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||
elif self.img_mode == 'RGB':
|
||||
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
|
||||
img = img[:, :, ::-1]
|
||||
|
||||
if self.channel_first:
|
||||
img = img.transpose((2, 0, 1))
|
||||
|
||||
data['image'] = img
|
||||
return data
|
||||
|
||||
|
||||
class NRTRDecodeImage(object):
|
||||
""" decode image """
|
||||
|
||||
def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
|
||||
self.img_mode = img_mode
|
||||
self.channel_first = channel_first
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
if six.PY2:
|
||||
assert type(img) is str and len(
|
||||
img) > 0, "invalid input 'img' in DecodeImage"
|
||||
else:
|
||||
assert type(img) is bytes and len(
|
||||
img) > 0, "invalid input 'img' in DecodeImage"
|
||||
img = np.frombuffer(img, dtype='uint8')
|
||||
|
||||
img = cv2.imdecode(img, 1)
|
||||
|
||||
if img is None:
|
||||
return None
|
||||
if self.img_mode == 'GRAY':
|
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||
elif self.img_mode == 'RGB':
|
||||
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
|
||||
img = img[:, :, ::-1]
|
||||
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
if self.channel_first:
|
||||
img = img.transpose((2, 0, 1))
|
||||
data['image'] = img
|
||||
return data
|
||||
|
||||
class NormalizeImage(object):
|
||||
""" normalize image such as substract mean, divide std
|
||||
"""
|
||||
|
||||
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
|
||||
if isinstance(scale, str):
|
||||
scale = eval(scale)
|
||||
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
|
||||
mean = mean if mean is not None else [0.485, 0.456, 0.406]
|
||||
std = std if std is not None else [0.229, 0.224, 0.225]
|
||||
|
||||
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
|
||||
self.mean = np.array(mean).reshape(shape).astype('float32')
|
||||
self.std = np.array(std).reshape(shape).astype('float32')
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
from PIL import Image
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.array(img)
|
||||
|
||||
assert isinstance(img,
|
||||
np.ndarray), "invalid input 'img' in NormalizeImage"
|
||||
data['image'] = (
|
||||
img.astype('float32') * self.scale - self.mean) / self.std
|
||||
return data
|
||||
|
||||
|
||||
class ToCHWImage(object):
|
||||
""" convert hwc image to chw image
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
pass
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
from PIL import Image
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.array(img)
|
||||
data['image'] = img.transpose((2, 0, 1))
|
||||
return data
|
||||
|
||||
|
||||
class KeepKeys(object):
|
||||
def __init__(self, keep_keys, **kwargs):
|
||||
self.keep_keys = keep_keys
|
||||
|
||||
def __call__(self, data):
|
||||
data_list = []
|
||||
for key in self.keep_keys:
|
||||
data_list.append(data[key])
|
||||
return data_list
|
||||
|
||||
|
||||
class DetResizeForTest(object):
|
||||
def __init__(self, **kwargs):
|
||||
super(DetResizeForTest, self).__init__()
|
||||
self.square_input = True
|
||||
self.resize_type = 0
|
||||
if 'image_shape' in kwargs:
|
||||
self.image_shape = kwargs['image_shape']
|
||||
self.resize_type = 1
|
||||
elif 'limit_side_len' in kwargs:
|
||||
self.limit_side_len = kwargs['limit_side_len']
|
||||
self.limit_type = kwargs.get('limit_type', 'min')
|
||||
elif 'resize_long' in kwargs:
|
||||
self.resize_type = 2
|
||||
self.resize_long = kwargs.get('resize_long', 960)
|
||||
else:
|
||||
self.limit_side_len = 736
|
||||
self.limit_type = 'min'
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
src_h, src_w, _ = img.shape
|
||||
|
||||
if self.resize_type == 0:
|
||||
# img, shape = self.resize_image_type0(img)
|
||||
img, [ratio_h, ratio_w] = self.resize_image_type0(img)
|
||||
elif self.resize_type == 2:
|
||||
img, [ratio_h, ratio_w] = self.resize_image_type2(img)
|
||||
else:
|
||||
# img, shape = self.resize_image_type1(img)
|
||||
img, [ratio_h, ratio_w] = self.resize_image_type1(img)
|
||||
|
||||
|
||||
|
||||
data['image'] = img
|
||||
data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
|
||||
if len(data['shape'].shape) == 1:
|
||||
data['shape'] = np.expand_dims(data['shape'], axis=0)
|
||||
return data
|
||||
|
||||
def resize_image_type1(self, img):
|
||||
resize_h, resize_w = self.image_shape
|
||||
ori_h, ori_w = img.shape[:2] # (h, w, c)
|
||||
ratio_h = float(resize_h) / ori_h
|
||||
ratio_w = float(resize_w) / ori_w
|
||||
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
||||
# return img, np.array([ori_h, ori_w])
|
||||
return img, [ratio_h, ratio_w]
|
||||
|
||||
def resize_image_type0(self, img):
|
||||
"""
|
||||
resize image to a size multiple of 32 which is required by the network
|
||||
args:
|
||||
img(array): array with shape [h, w, c]
|
||||
return(tuple):
|
||||
img, (ratio_h, ratio_w)
|
||||
"""
|
||||
limit_side_len = self.limit_side_len
|
||||
h, w, c = img.shape
|
||||
|
||||
# limit the max side
|
||||
if self.limit_type == 'max':
|
||||
if max(h, w) > limit_side_len:
|
||||
if h > w:
|
||||
ratio = float(limit_side_len) / h
|
||||
else:
|
||||
ratio = float(limit_side_len) / w
|
||||
else:
|
||||
ratio = 1.
|
||||
elif self.limit_type == 'min':
|
||||
if min(h, w) < limit_side_len:
|
||||
if h < w:
|
||||
ratio = float(limit_side_len) / h
|
||||
else:
|
||||
ratio = float(limit_side_len) / w
|
||||
else:
|
||||
ratio = 1.
|
||||
elif self.limit_type == 'resize_long':
|
||||
ratio = float(limit_side_len) / max(h,w)
|
||||
else:
|
||||
raise Exception('not support limit type, image ')
|
||||
resize_h = int(h * ratio)
|
||||
resize_w = int(w * ratio)
|
||||
|
||||
resize_h = max(int(round(resize_h / 32) * 32), 32)
|
||||
resize_w = max(int(round(resize_w / 32) * 32), 32)
|
||||
|
||||
try:
|
||||
if int(resize_w) <= 0 or int(resize_h) <= 0:
|
||||
return None, (None, None)
|
||||
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
||||
except:
|
||||
print(img.shape, resize_w, resize_h)
|
||||
sys.exit(0)
|
||||
ratio_h = resize_h / float(h)
|
||||
ratio_w = resize_w / float(w)
|
||||
return img, [ratio_h, ratio_w]
|
||||
|
||||
def resize_image_type2(self, img):
|
||||
h, w, _ = img.shape
|
||||
|
||||
resize_w = w
|
||||
resize_h = h
|
||||
|
||||
if resize_h > resize_w:
|
||||
ratio = float(self.resize_long) / resize_h
|
||||
else:
|
||||
ratio = float(self.resize_long) / resize_w
|
||||
|
||||
resize_h = int(resize_h * ratio)
|
||||
resize_w = int(resize_w * ratio)
|
||||
|
||||
max_stride = 128
|
||||
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
||||
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
||||
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
||||
ratio_h = resize_h / float(h)
|
||||
ratio_w = resize_w / float(w)
|
||||
|
||||
return img, [ratio_h, ratio_w]
|
||||
|
||||
|
||||
class E2EResizeForTest(object):
|
||||
def __init__(self, **kwargs):
|
||||
super(E2EResizeForTest, self).__init__()
|
||||
self.max_side_len = kwargs['max_side_len']
|
||||
self.valid_set = kwargs['valid_set']
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
src_h, src_w, _ = img.shape
|
||||
if self.valid_set == 'totaltext':
|
||||
im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
|
||||
img, max_side_len=self.max_side_len)
|
||||
else:
|
||||
im_resized, (ratio_h, ratio_w) = self.resize_image(
|
||||
img, max_side_len=self.max_side_len)
|
||||
data['image'] = im_resized
|
||||
data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
|
||||
return data
|
||||
|
||||
def resize_image_for_totaltext(self, im, max_side_len=512):
|
||||
|
||||
h, w, _ = im.shape
|
||||
resize_w = w
|
||||
resize_h = h
|
||||
ratio = 1.25
|
||||
if h * ratio > max_side_len:
|
||||
ratio = float(max_side_len) / resize_h
|
||||
resize_h = int(resize_h * ratio)
|
||||
resize_w = int(resize_w * ratio)
|
||||
|
||||
max_stride = 128
|
||||
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
||||
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
||||
im = cv2.resize(im, (int(resize_w), int(resize_h)))
|
||||
ratio_h = resize_h / float(h)
|
||||
ratio_w = resize_w / float(w)
|
||||
return im, (ratio_h, ratio_w)
|
||||
|
||||
def resize_image(self, im, max_side_len=512):
|
||||
"""
|
||||
resize image to a size multiple of max_stride which is required by the network
|
||||
:param im: the resized image
|
||||
:param max_side_len: limit of max image size to avoid out of memory in gpu
|
||||
:return: the resized image and the resize ratio
|
||||
"""
|
||||
h, w, _ = im.shape
|
||||
|
||||
resize_w = w
|
||||
resize_h = h
|
||||
|
||||
# Fix the longer side
|
||||
if resize_h > resize_w:
|
||||
ratio = float(max_side_len) / resize_h
|
||||
else:
|
||||
ratio = float(max_side_len) / resize_w
|
||||
|
||||
resize_h = int(resize_h * ratio)
|
||||
resize_w = int(resize_w * ratio)
|
||||
|
||||
max_stride = 128
|
||||
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
||||
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
||||
im = cv2.resize(im, (int(resize_w), int(resize_h)))
|
||||
ratio_h = resize_h / float(h)
|
||||
ratio_w = resize_w / float(w)
|
||||
|
||||
return im, (ratio_h, ratio_w)
|
||||
|
||||
|
||||
|
||||
class Pad_to_max_len(object):
|
||||
def __init__(self, **kwargs):
|
||||
super(Pad_to_max_len, self).__init__()
|
||||
self.max_h = kwargs['max_h']
|
||||
self.max_w = kwargs['max_w']
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
if img.shape[-1] == 3:
|
||||
# hwc
|
||||
if img.shape[0]!= self.max_h:
|
||||
# TODO support
|
||||
# assert False, "not support"
|
||||
pad_h = self.max_h - img.shape[0]
|
||||
pad_w = self.max_w - img.shape[1]
|
||||
img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant', constant_values=0)
|
||||
if img.shape[1] < self.max_w:
|
||||
pad_w = self.max_w - img.shape[1]
|
||||
img = np.pad(img, ((0, 0), (0, pad_w), (0, 0)), 'constant', constant_values=0)
|
||||
|
||||
elif img.shape[0] == 3:
|
||||
# chw
|
||||
img = img.transpose((1, 2, 0))
|
||||
if img.shape[1]!= self.max_h:
|
||||
# TODO support
|
||||
assert False, "not support"
|
||||
if img.shape[0] < self.max_w:
|
||||
pad_w = self.max_w - img.shape[0]
|
||||
img = np.pad(img, ((0, 0), (0, 0), (0, pad_w)), 'constant', constant_values=0)
|
||||
|
||||
else:
|
||||
assert False, "not support"
|
||||
|
||||
data['image'] = img
|
||||
|
||||
return data
|
||||
0
plugins/rknn/src/rec_utils/__init__.py
Normal file
0
plugins/rknn/src/rec_utils/__init__.py
Normal file
376
plugins/rknn/src/rec_utils/operators.py
Normal file
376
plugins/rknn/src/rec_utils/operators.py
Normal file
@@ -0,0 +1,376 @@
|
||||
"""
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import sys
|
||||
import six
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DecodeImage(object):
|
||||
""" decode image """
|
||||
|
||||
def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
|
||||
self.img_mode = img_mode
|
||||
self.channel_first = channel_first
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
if six.PY2:
|
||||
assert type(img) is str and len(
|
||||
img) > 0, "invalid input 'img' in DecodeImage"
|
||||
else:
|
||||
assert type(img) is bytes and len(
|
||||
img) > 0, "invalid input 'img' in DecodeImage"
|
||||
img = np.frombuffer(img, dtype='uint8')
|
||||
img = cv2.imdecode(img, 1)
|
||||
if img is None:
|
||||
return None
|
||||
if self.img_mode == 'GRAY':
|
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||
elif self.img_mode == 'RGB':
|
||||
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
|
||||
img = img[:, :, ::-1]
|
||||
|
||||
if self.channel_first:
|
||||
img = img.transpose((2, 0, 1))
|
||||
|
||||
data['image'] = img
|
||||
return data
|
||||
|
||||
|
||||
class NRTRDecodeImage(object):
|
||||
""" decode image """
|
||||
|
||||
def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
|
||||
self.img_mode = img_mode
|
||||
self.channel_first = channel_first
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
if six.PY2:
|
||||
assert type(img) is str and len(
|
||||
img) > 0, "invalid input 'img' in DecodeImage"
|
||||
else:
|
||||
assert type(img) is bytes and len(
|
||||
img) > 0, "invalid input 'img' in DecodeImage"
|
||||
img = np.frombuffer(img, dtype='uint8')
|
||||
|
||||
img = cv2.imdecode(img, 1)
|
||||
|
||||
if img is None:
|
||||
return None
|
||||
if self.img_mode == 'GRAY':
|
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||
elif self.img_mode == 'RGB':
|
||||
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
|
||||
img = img[:, :, ::-1]
|
||||
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
if self.channel_first:
|
||||
img = img.transpose((2, 0, 1))
|
||||
data['image'] = img
|
||||
return data
|
||||
|
||||
class NormalizeImage(object):
|
||||
""" normalize image such as substract mean, divide std
|
||||
"""
|
||||
|
||||
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
|
||||
if isinstance(scale, str):
|
||||
scale = eval(scale)
|
||||
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
|
||||
mean = mean if mean is not None else [0.485, 0.456, 0.406]
|
||||
std = std if std is not None else [0.229, 0.224, 0.225]
|
||||
|
||||
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
|
||||
self.mean = np.array(mean).reshape(shape).astype('float32')
|
||||
self.std = np.array(std).reshape(shape).astype('float32')
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
from PIL import Image
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.array(img)
|
||||
|
||||
assert isinstance(img, np.ndarray), "invalid input 'img' in NormalizeImage"
|
||||
|
||||
i = img.astype('float32')
|
||||
i = i * self.scale
|
||||
i = i - self.mean
|
||||
i = i / self.std
|
||||
data['image'] = i
|
||||
return data
|
||||
|
||||
|
||||
class ToCHWImage(object):
|
||||
""" convert hwc image to chw image
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
pass
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
from PIL import Image
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.array(img)
|
||||
data['image'] = img.transpose((2, 0, 1))
|
||||
return data
|
||||
|
||||
|
||||
class KeepKeys(object):
|
||||
def __init__(self, keep_keys, **kwargs):
|
||||
self.keep_keys = keep_keys
|
||||
|
||||
def __call__(self, data):
|
||||
data_list = []
|
||||
for key in self.keep_keys:
|
||||
data_list.append(data[key])
|
||||
return data_list
|
||||
|
||||
|
||||
class DetResizeForTest(object):
|
||||
def __init__(self, **kwargs):
|
||||
super(DetResizeForTest, self).__init__()
|
||||
self.square_input = True
|
||||
self.resize_type = 0
|
||||
if 'image_shape' in kwargs:
|
||||
self.image_shape = kwargs['image_shape']
|
||||
self.resize_type = 1
|
||||
elif 'limit_side_len' in kwargs:
|
||||
self.limit_side_len = kwargs['limit_side_len']
|
||||
self.limit_type = kwargs.get('limit_type', 'min')
|
||||
elif 'resize_long' in kwargs:
|
||||
self.resize_type = 2
|
||||
self.resize_long = kwargs.get('resize_long', 960)
|
||||
else:
|
||||
self.limit_side_len = 736
|
||||
self.limit_type = 'min'
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
src_h, src_w, _ = img.shape
|
||||
|
||||
if self.resize_type == 0:
|
||||
# img, shape = self.resize_image_type0(img)
|
||||
img, [ratio_h, ratio_w] = self.resize_image_type0(img)
|
||||
elif self.resize_type == 2:
|
||||
img, [ratio_h, ratio_w] = self.resize_image_type2(img)
|
||||
else:
|
||||
# img, shape = self.resize_image_type1(img)
|
||||
img, [ratio_h, ratio_w] = self.resize_image_type1(img)
|
||||
|
||||
|
||||
|
||||
data['image'] = img
|
||||
data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
|
||||
if len(data['shape'].shape) == 1:
|
||||
data['shape'] = np.expand_dims(data['shape'], axis=0)
|
||||
return data
|
||||
|
||||
def resize_image_type1(self, img):
|
||||
resize_h, resize_w = self.image_shape
|
||||
ori_h, ori_w = img.shape[:2] # (h, w, c)
|
||||
ratio_h = float(resize_h) / ori_h
|
||||
ratio_w = float(resize_w) / ori_w
|
||||
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
||||
# return img, np.array([ori_h, ori_w])
|
||||
return img, [ratio_h, ratio_w]
|
||||
|
||||
def resize_image_type0(self, img):
|
||||
"""
|
||||
resize image to a size multiple of 32 which is required by the network
|
||||
args:
|
||||
img(array): array with shape [h, w, c]
|
||||
return(tuple):
|
||||
img, (ratio_h, ratio_w)
|
||||
"""
|
||||
limit_side_len = self.limit_side_len
|
||||
h, w, c = img.shape
|
||||
|
||||
# limit the max side
|
||||
if self.limit_type == 'max':
|
||||
if max(h, w) > limit_side_len:
|
||||
if h > w:
|
||||
ratio = float(limit_side_len) / h
|
||||
else:
|
||||
ratio = float(limit_side_len) / w
|
||||
else:
|
||||
ratio = 1.
|
||||
elif self.limit_type == 'min':
|
||||
if min(h, w) < limit_side_len:
|
||||
if h < w:
|
||||
ratio = float(limit_side_len) / h
|
||||
else:
|
||||
ratio = float(limit_side_len) / w
|
||||
else:
|
||||
ratio = 1.
|
||||
elif self.limit_type == 'resize_long':
|
||||
ratio = float(limit_side_len) / max(h,w)
|
||||
else:
|
||||
raise Exception('not support limit type, image ')
|
||||
resize_h = int(h * ratio)
|
||||
resize_w = int(w * ratio)
|
||||
|
||||
resize_h = max(int(round(resize_h / 32) * 32), 32)
|
||||
resize_w = max(int(round(resize_w / 32) * 32), 32)
|
||||
|
||||
try:
|
||||
if int(resize_w) <= 0 or int(resize_h) <= 0:
|
||||
return None, (None, None)
|
||||
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
||||
except:
|
||||
print(img.shape, resize_w, resize_h)
|
||||
sys.exit(0)
|
||||
ratio_h = resize_h / float(h)
|
||||
ratio_w = resize_w / float(w)
|
||||
return img, [ratio_h, ratio_w]
|
||||
|
||||
def resize_image_type2(self, img):
|
||||
h, w, _ = img.shape
|
||||
|
||||
resize_w = w
|
||||
resize_h = h
|
||||
|
||||
if resize_h > resize_w:
|
||||
ratio = float(self.resize_long) / resize_h
|
||||
else:
|
||||
ratio = float(self.resize_long) / resize_w
|
||||
|
||||
resize_h = int(resize_h * ratio)
|
||||
resize_w = int(resize_w * ratio)
|
||||
|
||||
max_stride = 128
|
||||
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
||||
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
||||
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
||||
ratio_h = resize_h / float(h)
|
||||
ratio_w = resize_w / float(w)
|
||||
|
||||
return img, [ratio_h, ratio_w]
|
||||
|
||||
|
||||
class E2EResizeForTest(object):
|
||||
def __init__(self, **kwargs):
|
||||
super(E2EResizeForTest, self).__init__()
|
||||
self.max_side_len = kwargs['max_side_len']
|
||||
self.valid_set = kwargs['valid_set']
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
src_h, src_w, _ = img.shape
|
||||
if self.valid_set == 'totaltext':
|
||||
im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
|
||||
img, max_side_len=self.max_side_len)
|
||||
else:
|
||||
im_resized, (ratio_h, ratio_w) = self.resize_image(
|
||||
img, max_side_len=self.max_side_len)
|
||||
data['image'] = im_resized
|
||||
data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
|
||||
return data
|
||||
|
||||
def resize_image_for_totaltext(self, im, max_side_len=512):
|
||||
|
||||
h, w, _ = im.shape
|
||||
resize_w = w
|
||||
resize_h = h
|
||||
ratio = 1.25
|
||||
if h * ratio > max_side_len:
|
||||
ratio = float(max_side_len) / resize_h
|
||||
resize_h = int(resize_h * ratio)
|
||||
resize_w = int(resize_w * ratio)
|
||||
|
||||
max_stride = 128
|
||||
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
||||
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
||||
im = cv2.resize(im, (int(resize_w), int(resize_h)))
|
||||
ratio_h = resize_h / float(h)
|
||||
ratio_w = resize_w / float(w)
|
||||
return im, (ratio_h, ratio_w)
|
||||
|
||||
def resize_image(self, im, max_side_len=512):
|
||||
"""
|
||||
resize image to a size multiple of max_stride which is required by the network
|
||||
:param im: the resized image
|
||||
:param max_side_len: limit of max image size to avoid out of memory in gpu
|
||||
:return: the resized image and the resize ratio
|
||||
"""
|
||||
h, w, _ = im.shape
|
||||
|
||||
resize_w = w
|
||||
resize_h = h
|
||||
|
||||
# Fix the longer side
|
||||
if resize_h > resize_w:
|
||||
ratio = float(max_side_len) / resize_h
|
||||
else:
|
||||
ratio = float(max_side_len) / resize_w
|
||||
|
||||
resize_h = int(resize_h * ratio)
|
||||
resize_w = int(resize_w * ratio)
|
||||
|
||||
max_stride = 128
|
||||
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
||||
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
||||
im = cv2.resize(im, (int(resize_w), int(resize_h)))
|
||||
ratio_h = resize_h / float(h)
|
||||
ratio_w = resize_w / float(w)
|
||||
|
||||
return im, (ratio_h, ratio_w)
|
||||
|
||||
|
||||
|
||||
class Pad_to_max_len(object):
|
||||
def __init__(self, **kwargs):
|
||||
super(Pad_to_max_len, self).__init__()
|
||||
self.max_h = kwargs['max_h']
|
||||
self.max_w = kwargs['max_w']
|
||||
|
||||
def __call__(self, data):
|
||||
img = data['image']
|
||||
if img.shape[-1] == 3:
|
||||
# hwc
|
||||
if img.shape[0]!= self.max_h:
|
||||
# TODO support
|
||||
# assert False, "not support"
|
||||
pad_h = self.max_h - img.shape[0]
|
||||
pad_w = self.max_w - img.shape[1]
|
||||
img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant', constant_values=0)
|
||||
if img.shape[1] < self.max_w:
|
||||
pad_w = self.max_w - img.shape[1]
|
||||
img = np.pad(img, ((0, 0), (0, pad_w), (0, 0)), 'constant', constant_values=0)
|
||||
|
||||
elif img.shape[0] == 3:
|
||||
# chw
|
||||
img = img.transpose((1, 2, 0))
|
||||
if img.shape[1]!= self.max_h:
|
||||
# TODO support
|
||||
assert False, "not support"
|
||||
if img.shape[0] < self.max_w:
|
||||
pad_w = self.max_w - img.shape[0]
|
||||
img = np.pad(img, ((0, 0), (0, 0), (0, pad_w)), 'constant', constant_values=0)
|
||||
|
||||
else:
|
||||
assert False, "not support"
|
||||
|
||||
data['image'] = img
|
||||
|
||||
return data
|
||||
814
plugins/rknn/src/rec_utils/rec_postprocess.py
Normal file
814
plugins/rknn/src/rec_utils/rec_postprocess.py
Normal file
@@ -0,0 +1,814 @@
|
||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
# import paddle
|
||||
# from paddle.nn import functional as F
|
||||
import re
|
||||
|
||||
|
||||
class BaseRecLabelDecode(object):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self, character_dict_path=None, use_space_char=False):
|
||||
self.beg_str = "sos"
|
||||
self.end_str = "eos"
|
||||
|
||||
self.character_str = []
|
||||
if character_dict_path is None:
|
||||
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
|
||||
dict_character = list(self.character_str)
|
||||
else:
|
||||
with open(character_dict_path, "rb") as fin:
|
||||
lines = fin.readlines()
|
||||
for line in lines:
|
||||
line = line.decode('utf-8').strip("\n").strip("\r\n")
|
||||
self.character_str.append(line)
|
||||
if use_space_char:
|
||||
self.character_str.append(" ")
|
||||
dict_character = list(self.character_str)
|
||||
|
||||
dict_character = self.add_special_char(dict_character)
|
||||
self.dict = {}
|
||||
for i, char in enumerate(dict_character):
|
||||
self.dict[char] = i
|
||||
self.character = dict_character
|
||||
|
||||
if 'arabic' in character_dict_path:
|
||||
self.reverse = True
|
||||
else:
|
||||
self.reverse = False
|
||||
|
||||
def pred_reverse(self, pred):
|
||||
pred_re = []
|
||||
c_current = ''
|
||||
for c in pred:
|
||||
if not bool(re.search('[a-zA-Z0-9 :*./%+-]', c)):
|
||||
if c_current != '':
|
||||
pred_re.append(c_current)
|
||||
pred_re.append(c)
|
||||
c_current = ''
|
||||
else:
|
||||
c_current += c
|
||||
if c_current != '':
|
||||
pred_re.append(c_current)
|
||||
|
||||
return ''.join(pred_re[::-1])
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
return dict_character
|
||||
|
||||
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
||||
""" convert text-index into text-label. """
|
||||
result_list = []
|
||||
ignored_tokens = self.get_ignored_tokens()
|
||||
batch_size = len(text_index)
|
||||
for batch_idx in range(batch_size):
|
||||
selection = np.ones(len(text_index[batch_idx]), dtype=bool)
|
||||
if is_remove_duplicate:
|
||||
selection[1:] = text_index[batch_idx][1:] != text_index[
|
||||
batch_idx][:-1]
|
||||
for ignored_token in ignored_tokens:
|
||||
selection &= text_index[batch_idx] != ignored_token
|
||||
|
||||
char_list = [
|
||||
self.character[text_id]
|
||||
for text_id in text_index[batch_idx][selection]
|
||||
]
|
||||
if text_prob is not None:
|
||||
conf_list = text_prob[batch_idx][selection]
|
||||
else:
|
||||
conf_list = [1] * len(selection)
|
||||
if len(conf_list) == 0:
|
||||
conf_list = [0]
|
||||
|
||||
text = ''.join(char_list)
|
||||
|
||||
if self.reverse: # for arabic rec
|
||||
text = self.pred_reverse(text)
|
||||
|
||||
result_list.append((text, np.mean(conf_list).tolist()))
|
||||
return result_list
|
||||
|
||||
def get_ignored_tokens(self):
|
||||
return [0] # for ctc blank
|
||||
|
||||
|
||||
class CTCLabelDecode(BaseRecLabelDecode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self, character_dict_path=None, use_space_char=False,
|
||||
**kwargs):
|
||||
super(CTCLabelDecode, self).__init__(character_dict_path,
|
||||
use_space_char)
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
if isinstance(preds, tuple) or isinstance(preds, list):
|
||||
preds = preds[-1]
|
||||
# if isinstance(preds, paddle.Tensor):
|
||||
# preds = preds.numpy()
|
||||
preds_idx = preds.argmax(axis=2)
|
||||
preds_prob = preds.max(axis=2)
|
||||
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
|
||||
if label is None:
|
||||
return text
|
||||
label = self.decode(label)
|
||||
return text, label
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
dict_character = ['blank'] + dict_character
|
||||
return dict_character
|
||||
|
||||
|
||||
class DistillationCTCLabelDecode(CTCLabelDecode):
|
||||
"""
|
||||
Convert
|
||||
Convert between text-label and text-index
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
character_dict_path=None,
|
||||
use_space_char=False,
|
||||
model_name=["student"],
|
||||
key=None,
|
||||
multi_head=False,
|
||||
**kwargs):
|
||||
super(DistillationCTCLabelDecode, self).__init__(character_dict_path,
|
||||
use_space_char)
|
||||
if not isinstance(model_name, list):
|
||||
model_name = [model_name]
|
||||
self.model_name = model_name
|
||||
|
||||
self.key = key
|
||||
self.multi_head = multi_head
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
output = dict()
|
||||
for name in self.model_name:
|
||||
pred = preds[name]
|
||||
if self.key is not None:
|
||||
pred = pred[self.key]
|
||||
if self.multi_head and isinstance(pred, dict):
|
||||
pred = pred['ctc']
|
||||
output[name] = super().__call__(pred, label=label, *args, **kwargs)
|
||||
return output
|
||||
|
||||
|
||||
class AttnLabelDecode(BaseRecLabelDecode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self, character_dict_path=None, use_space_char=False,
|
||||
**kwargs):
|
||||
super(AttnLabelDecode, self).__init__(character_dict_path,
|
||||
use_space_char)
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
self.beg_str = "sos"
|
||||
self.end_str = "eos"
|
||||
dict_character = dict_character
|
||||
dict_character = [self.beg_str] + dict_character + [self.end_str]
|
||||
return dict_character
|
||||
|
||||
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
||||
""" convert text-index into text-label. """
|
||||
result_list = []
|
||||
ignored_tokens = self.get_ignored_tokens()
|
||||
[beg_idx, end_idx] = self.get_ignored_tokens()
|
||||
batch_size = len(text_index)
|
||||
for batch_idx in range(batch_size):
|
||||
char_list = []
|
||||
conf_list = []
|
||||
for idx in range(len(text_index[batch_idx])):
|
||||
if text_index[batch_idx][idx] in ignored_tokens:
|
||||
continue
|
||||
if int(text_index[batch_idx][idx]) == int(end_idx):
|
||||
break
|
||||
if is_remove_duplicate:
|
||||
# only for predict
|
||||
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
|
||||
batch_idx][idx]:
|
||||
continue
|
||||
char_list.append(self.character[int(text_index[batch_idx][
|
||||
idx])])
|
||||
if text_prob is not None:
|
||||
conf_list.append(text_prob[batch_idx][idx])
|
||||
else:
|
||||
conf_list.append(1)
|
||||
text = ''.join(char_list)
|
||||
result_list.append((text, np.mean(conf_list).tolist()))
|
||||
return result_list
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
"""
|
||||
text = self.decode(text)
|
||||
if label is None:
|
||||
return text
|
||||
else:
|
||||
label = self.decode(label, is_remove_duplicate=False)
|
||||
return text, label
|
||||
"""
|
||||
# if isinstance(preds, paddle.Tensor):
|
||||
# preds = preds.numpy()
|
||||
|
||||
preds_idx = preds.argmax(axis=2)
|
||||
preds_prob = preds.max(axis=2)
|
||||
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
||||
if label is None:
|
||||
return text
|
||||
label = self.decode(label, is_remove_duplicate=False)
|
||||
return text, label
|
||||
|
||||
def get_ignored_tokens(self):
|
||||
beg_idx = self.get_beg_end_flag_idx("beg")
|
||||
end_idx = self.get_beg_end_flag_idx("end")
|
||||
return [beg_idx, end_idx]
|
||||
|
||||
def get_beg_end_flag_idx(self, beg_or_end):
|
||||
if beg_or_end == "beg":
|
||||
idx = np.array(self.dict[self.beg_str])
|
||||
elif beg_or_end == "end":
|
||||
idx = np.array(self.dict[self.end_str])
|
||||
else:
|
||||
assert False, "unsupport type %s in get_beg_end_flag_idx" \
|
||||
% beg_or_end
|
||||
return idx
|
||||
|
||||
|
||||
class SEEDLabelDecode(BaseRecLabelDecode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self, character_dict_path=None, use_space_char=False,
|
||||
**kwargs):
|
||||
super(SEEDLabelDecode, self).__init__(character_dict_path,
|
||||
use_space_char)
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
self.padding_str = "padding"
|
||||
self.end_str = "eos"
|
||||
self.unknown = "unknown"
|
||||
dict_character = dict_character + [
|
||||
self.end_str, self.padding_str, self.unknown
|
||||
]
|
||||
return dict_character
|
||||
|
||||
def get_ignored_tokens(self):
|
||||
end_idx = self.get_beg_end_flag_idx("eos")
|
||||
return [end_idx]
|
||||
|
||||
def get_beg_end_flag_idx(self, beg_or_end):
|
||||
if beg_or_end == "sos":
|
||||
idx = np.array(self.dict[self.beg_str])
|
||||
elif beg_or_end == "eos":
|
||||
idx = np.array(self.dict[self.end_str])
|
||||
else:
|
||||
assert False, "unsupport type %s in get_beg_end_flag_idx" % beg_or_end
|
||||
return idx
|
||||
|
||||
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
||||
""" convert text-index into text-label. """
|
||||
result_list = []
|
||||
[end_idx] = self.get_ignored_tokens()
|
||||
batch_size = len(text_index)
|
||||
for batch_idx in range(batch_size):
|
||||
char_list = []
|
||||
conf_list = []
|
||||
for idx in range(len(text_index[batch_idx])):
|
||||
if int(text_index[batch_idx][idx]) == int(end_idx):
|
||||
break
|
||||
if is_remove_duplicate:
|
||||
# only for predict
|
||||
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
|
||||
batch_idx][idx]:
|
||||
continue
|
||||
char_list.append(self.character[int(text_index[batch_idx][
|
||||
idx])])
|
||||
if text_prob is not None:
|
||||
conf_list.append(text_prob[batch_idx][idx])
|
||||
else:
|
||||
conf_list.append(1)
|
||||
text = ''.join(char_list)
|
||||
result_list.append((text, np.mean(conf_list).tolist()))
|
||||
return result_list
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
"""
|
||||
text = self.decode(text)
|
||||
if label is None:
|
||||
return text
|
||||
else:
|
||||
label = self.decode(label, is_remove_duplicate=False)
|
||||
return text, label
|
||||
"""
|
||||
preds_idx = preds["rec_pred"]
|
||||
# if isinstance(preds_idx, paddle.Tensor):
|
||||
# preds_idx = preds_idx.numpy()
|
||||
if "rec_pred_scores" in preds:
|
||||
preds_idx = preds["rec_pred"]
|
||||
preds_prob = preds["rec_pred_scores"]
|
||||
else:
|
||||
preds_idx = preds["rec_pred"].argmax(axis=2)
|
||||
preds_prob = preds["rec_pred"].max(axis=2)
|
||||
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
||||
if label is None:
|
||||
return text
|
||||
label = self.decode(label, is_remove_duplicate=False)
|
||||
return text, label
|
||||
|
||||
|
||||
class SRNLabelDecode(BaseRecLabelDecode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self, character_dict_path=None, use_space_char=False,
|
||||
**kwargs):
|
||||
super(SRNLabelDecode, self).__init__(character_dict_path,
|
||||
use_space_char)
|
||||
self.max_text_length = kwargs.get('max_text_length', 25)
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
pred = preds['predict']
|
||||
char_num = len(self.character_str) + 2
|
||||
# if isinstance(pred, paddle.Tensor):
|
||||
# pred = pred.numpy()
|
||||
pred = np.reshape(pred, [-1, char_num])
|
||||
|
||||
preds_idx = np.argmax(pred, axis=1)
|
||||
preds_prob = np.max(pred, axis=1)
|
||||
|
||||
preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
|
||||
|
||||
preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
|
||||
|
||||
text = self.decode(preds_idx, preds_prob)
|
||||
|
||||
if label is None:
|
||||
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
||||
return text
|
||||
label = self.decode(label)
|
||||
return text, label
|
||||
|
||||
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
||||
""" convert text-index into text-label. """
|
||||
result_list = []
|
||||
ignored_tokens = self.get_ignored_tokens()
|
||||
batch_size = len(text_index)
|
||||
|
||||
for batch_idx in range(batch_size):
|
||||
char_list = []
|
||||
conf_list = []
|
||||
for idx in range(len(text_index[batch_idx])):
|
||||
if text_index[batch_idx][idx] in ignored_tokens:
|
||||
continue
|
||||
if is_remove_duplicate:
|
||||
# only for predict
|
||||
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
|
||||
batch_idx][idx]:
|
||||
continue
|
||||
char_list.append(self.character[int(text_index[batch_idx][
|
||||
idx])])
|
||||
if text_prob is not None:
|
||||
conf_list.append(text_prob[batch_idx][idx])
|
||||
else:
|
||||
conf_list.append(1)
|
||||
|
||||
text = ''.join(char_list)
|
||||
result_list.append((text, np.mean(conf_list).tolist()))
|
||||
return result_list
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
dict_character = dict_character + [self.beg_str, self.end_str]
|
||||
return dict_character
|
||||
|
||||
def get_ignored_tokens(self):
|
||||
beg_idx = self.get_beg_end_flag_idx("beg")
|
||||
end_idx = self.get_beg_end_flag_idx("end")
|
||||
return [beg_idx, end_idx]
|
||||
|
||||
def get_beg_end_flag_idx(self, beg_or_end):
|
||||
if beg_or_end == "beg":
|
||||
idx = np.array(self.dict[self.beg_str])
|
||||
elif beg_or_end == "end":
|
||||
idx = np.array(self.dict[self.end_str])
|
||||
else:
|
||||
assert False, "unsupport type %s in get_beg_end_flag_idx" \
|
||||
% beg_or_end
|
||||
return idx
|
||||
|
||||
|
||||
class SARLabelDecode(BaseRecLabelDecode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self, character_dict_path=None, use_space_char=False,
|
||||
**kwargs):
|
||||
super(SARLabelDecode, self).__init__(character_dict_path,
|
||||
use_space_char)
|
||||
|
||||
self.rm_symbol = kwargs.get('rm_symbol', False)
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
beg_end_str = "<BOS/EOS>"
|
||||
unknown_str = "<UKN>"
|
||||
padding_str = "<PAD>"
|
||||
dict_character = dict_character + [unknown_str]
|
||||
self.unknown_idx = len(dict_character) - 1
|
||||
dict_character = dict_character + [beg_end_str]
|
||||
self.start_idx = len(dict_character) - 1
|
||||
self.end_idx = len(dict_character) - 1
|
||||
dict_character = dict_character + [padding_str]
|
||||
self.padding_idx = len(dict_character) - 1
|
||||
return dict_character
|
||||
|
||||
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
||||
""" convert text-index into text-label. """
|
||||
result_list = []
|
||||
ignored_tokens = self.get_ignored_tokens()
|
||||
|
||||
batch_size = len(text_index)
|
||||
for batch_idx in range(batch_size):
|
||||
char_list = []
|
||||
conf_list = []
|
||||
for idx in range(len(text_index[batch_idx])):
|
||||
if text_index[batch_idx][idx] in ignored_tokens:
|
||||
continue
|
||||
if int(text_index[batch_idx][idx]) == int(self.end_idx):
|
||||
if text_prob is None and idx == 0:
|
||||
continue
|
||||
else:
|
||||
break
|
||||
if is_remove_duplicate:
|
||||
# only for predict
|
||||
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
|
||||
batch_idx][idx]:
|
||||
continue
|
||||
char_list.append(self.character[int(text_index[batch_idx][
|
||||
idx])])
|
||||
if text_prob is not None:
|
||||
conf_list.append(text_prob[batch_idx][idx])
|
||||
else:
|
||||
conf_list.append(1)
|
||||
text = ''.join(char_list)
|
||||
if self.rm_symbol:
|
||||
comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]')
|
||||
text = text.lower()
|
||||
text = comp.sub('', text)
|
||||
result_list.append((text, np.mean(conf_list).tolist()))
|
||||
return result_list
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
# if isinstance(preds, paddle.Tensor):
|
||||
# preds = preds.numpy()
|
||||
preds_idx = preds.argmax(axis=2)
|
||||
preds_prob = preds.max(axis=2)
|
||||
|
||||
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
||||
|
||||
if label is None:
|
||||
return text
|
||||
label = self.decode(label, is_remove_duplicate=False)
|
||||
return text, label
|
||||
|
||||
def get_ignored_tokens(self):
|
||||
return [self.padding_idx]
|
||||
|
||||
|
||||
class DistillationSARLabelDecode(SARLabelDecode):
|
||||
"""
|
||||
Convert
|
||||
Convert between text-label and text-index
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
character_dict_path=None,
|
||||
use_space_char=False,
|
||||
model_name=["student"],
|
||||
key=None,
|
||||
multi_head=False,
|
||||
**kwargs):
|
||||
super(DistillationSARLabelDecode, self).__init__(character_dict_path,
|
||||
use_space_char)
|
||||
if not isinstance(model_name, list):
|
||||
model_name = [model_name]
|
||||
self.model_name = model_name
|
||||
|
||||
self.key = key
|
||||
self.multi_head = multi_head
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
output = dict()
|
||||
for name in self.model_name:
|
||||
pred = preds[name]
|
||||
if self.key is not None:
|
||||
pred = pred[self.key]
|
||||
if self.multi_head and isinstance(pred, dict):
|
||||
pred = pred['sar']
|
||||
output[name] = super().__call__(pred, label=label, *args, **kwargs)
|
||||
return output
|
||||
|
||||
|
||||
class PRENLabelDecode(BaseRecLabelDecode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self, character_dict_path=None, use_space_char=False,
|
||||
**kwargs):
|
||||
super(PRENLabelDecode, self).__init__(character_dict_path,
|
||||
use_space_char)
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
padding_str = '<PAD>' # 0
|
||||
end_str = '<EOS>' # 1
|
||||
unknown_str = '<UNK>' # 2
|
||||
|
||||
dict_character = [padding_str, end_str, unknown_str] + dict_character
|
||||
self.padding_idx = 0
|
||||
self.end_idx = 1
|
||||
self.unknown_idx = 2
|
||||
|
||||
return dict_character
|
||||
|
||||
def decode(self, text_index, text_prob=None):
|
||||
""" convert text-index into text-label. """
|
||||
result_list = []
|
||||
batch_size = len(text_index)
|
||||
|
||||
for batch_idx in range(batch_size):
|
||||
char_list = []
|
||||
conf_list = []
|
||||
for idx in range(len(text_index[batch_idx])):
|
||||
if text_index[batch_idx][idx] == self.end_idx:
|
||||
break
|
||||
if text_index[batch_idx][idx] in \
|
||||
[self.padding_idx, self.unknown_idx]:
|
||||
continue
|
||||
char_list.append(self.character[int(text_index[batch_idx][
|
||||
idx])])
|
||||
if text_prob is not None:
|
||||
conf_list.append(text_prob[batch_idx][idx])
|
||||
else:
|
||||
conf_list.append(1)
|
||||
|
||||
text = ''.join(char_list)
|
||||
if len(text) > 0:
|
||||
result_list.append((text, np.mean(conf_list).tolist()))
|
||||
else:
|
||||
# here confidence of empty recog result is 1
|
||||
result_list.append(('', 1))
|
||||
return result_list
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
preds = preds.numpy()
|
||||
preds_idx = preds.argmax(axis=2)
|
||||
preds_prob = preds.max(axis=2)
|
||||
text = self.decode(preds_idx, preds_prob)
|
||||
if label is None:
|
||||
return text
|
||||
label = self.decode(label)
|
||||
return text, label
|
||||
|
||||
|
||||
class NRTRLabelDecode(BaseRecLabelDecode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self, character_dict_path=None, use_space_char=True, **kwargs):
|
||||
super(NRTRLabelDecode, self).__init__(character_dict_path,
|
||||
use_space_char)
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
|
||||
if len(preds) == 2:
|
||||
preds_id = preds[0]
|
||||
preds_prob = preds[1]
|
||||
# if isinstance(preds_id, paddle.Tensor):
|
||||
# preds_id = preds_id.numpy()
|
||||
# if isinstance(preds_prob, paddle.Tensor):
|
||||
# preds_prob = preds_prob.numpy()
|
||||
if preds_id[0][0] == 2:
|
||||
preds_idx = preds_id[:, 1:]
|
||||
preds_prob = preds_prob[:, 1:]
|
||||
else:
|
||||
preds_idx = preds_id
|
||||
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
||||
if label is None:
|
||||
return text
|
||||
label = self.decode(label[:, 1:])
|
||||
else:
|
||||
# if isinstance(preds, paddle.Tensor):
|
||||
# preds = preds.numpy()
|
||||
preds_idx = preds.argmax(axis=2)
|
||||
preds_prob = preds.max(axis=2)
|
||||
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
||||
if label is None:
|
||||
return text
|
||||
label = self.decode(label[:, 1:])
|
||||
return text, label
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
|
||||
return dict_character
|
||||
|
||||
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
||||
""" convert text-index into text-label. """
|
||||
result_list = []
|
||||
batch_size = len(text_index)
|
||||
for batch_idx in range(batch_size):
|
||||
char_list = []
|
||||
conf_list = []
|
||||
for idx in range(len(text_index[batch_idx])):
|
||||
try:
|
||||
char_idx = self.character[int(text_index[batch_idx][idx])]
|
||||
except:
|
||||
continue
|
||||
if char_idx == '</s>': # end
|
||||
break
|
||||
char_list.append(char_idx)
|
||||
if text_prob is not None:
|
||||
conf_list.append(text_prob[batch_idx][idx])
|
||||
else:
|
||||
conf_list.append(1)
|
||||
text = ''.join(char_list)
|
||||
result_list.append((text.lower(), np.mean(conf_list).tolist()))
|
||||
return result_list
|
||||
|
||||
|
||||
class ViTSTRLabelDecode(NRTRLabelDecode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self, character_dict_path=None, use_space_char=False,
|
||||
**kwargs):
|
||||
super(ViTSTRLabelDecode, self).__init__(character_dict_path,
|
||||
use_space_char)
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
# if isinstance(preds, paddle.Tensor):
|
||||
# preds = preds[:, 1:].numpy()
|
||||
# else:
|
||||
# preds = preds[:, 1:]
|
||||
preds = preds[:, 1:].numpy()
|
||||
preds_idx = preds.argmax(axis=2)
|
||||
preds_prob = preds.max(axis=2)
|
||||
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
||||
if label is None:
|
||||
return text
|
||||
label = self.decode(label[:, 1:])
|
||||
return text, label
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
dict_character = ['<s>', '</s>'] + dict_character
|
||||
return dict_character
|
||||
|
||||
|
||||
class ABINetLabelDecode(NRTRLabelDecode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self, character_dict_path=None, use_space_char=False,
|
||||
**kwargs):
|
||||
super(ABINetLabelDecode, self).__init__(character_dict_path,
|
||||
use_space_char)
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
if isinstance(preds, dict):
|
||||
preds = preds['align'][-1].numpy()
|
||||
# elif isinstance(preds, paddle.Tensor):
|
||||
# preds = preds.numpy()
|
||||
# else:
|
||||
# preds = preds
|
||||
preds = preds.numpy()
|
||||
preds_idx = preds.argmax(axis=2)
|
||||
preds_prob = preds.max(axis=2)
|
||||
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
||||
if label is None:
|
||||
return text
|
||||
label = self.decode(label)
|
||||
return text, label
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
dict_character = ['</s>'] + dict_character
|
||||
return dict_character
|
||||
|
||||
|
||||
class SPINLabelDecode(AttnLabelDecode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self, character_dict_path=None, use_space_char=False,
|
||||
**kwargs):
|
||||
super(SPINLabelDecode, self).__init__(character_dict_path,
|
||||
use_space_char)
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
self.beg_str = "sos"
|
||||
self.end_str = "eos"
|
||||
dict_character = dict_character
|
||||
dict_character = [self.beg_str] + [self.end_str] + dict_character
|
||||
return dict_character
|
||||
|
||||
|
||||
# class VLLabelDecode(BaseRecLabelDecode):
|
||||
# """ Convert between text-label and text-index """
|
||||
|
||||
# def __init__(self, character_dict_path=None, use_space_char=False,
|
||||
# **kwargs):
|
||||
# super(VLLabelDecode, self).__init__(character_dict_path, use_space_char)
|
||||
# self.max_text_length = kwargs.get('max_text_length', 25)
|
||||
# self.nclass = len(self.character) + 1
|
||||
# self.character = self.character[10:] + self.character[
|
||||
# 1:10] + [self.character[0]]
|
||||
|
||||
# def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
||||
# """ convert text-index into text-label. """
|
||||
# result_list = []
|
||||
# ignored_tokens = self.get_ignored_tokens()
|
||||
# batch_size = len(text_index)
|
||||
# for batch_idx in range(batch_size):
|
||||
# selection = np.ones(len(text_index[batch_idx]), dtype=bool)
|
||||
# if is_remove_duplicate:
|
||||
# selection[1:] = text_index[batch_idx][1:] != text_index[
|
||||
# batch_idx][:-1]
|
||||
# for ignored_token in ignored_tokens:
|
||||
# selection &= text_index[batch_idx] != ignored_token
|
||||
|
||||
# char_list = [
|
||||
# self.character[text_id - 1]
|
||||
# for text_id in text_index[batch_idx][selection]
|
||||
# ]
|
||||
# if text_prob is not None:
|
||||
# conf_list = text_prob[batch_idx][selection]
|
||||
# else:
|
||||
# conf_list = [1] * len(selection)
|
||||
# if len(conf_list) == 0:
|
||||
# conf_list = [0]
|
||||
|
||||
# text = ''.join(char_list)
|
||||
# result_list.append((text, np.mean(conf_list).tolist()))
|
||||
# return result_list
|
||||
|
||||
# def __call__(self, preds, label=None, length=None, *args, **kwargs):
|
||||
# if len(preds) == 2: # eval mode
|
||||
# text_pre, x = preds
|
||||
# b = text_pre.shape[1]
|
||||
# lenText = self.max_text_length
|
||||
# nsteps = self.max_text_length
|
||||
|
||||
# if not isinstance(text_pre, paddle.Tensor):
|
||||
# text_pre = paddle.to_tensor(text_pre, dtype='float32')
|
||||
|
||||
# out_res = paddle.zeros(
|
||||
# shape=[lenText, b, self.nclass], dtype=x.dtype)
|
||||
# out_length = paddle.zeros(shape=[b], dtype=x.dtype)
|
||||
# now_step = 0
|
||||
# for _ in range(nsteps):
|
||||
# if 0 in out_length and now_step < nsteps:
|
||||
# tmp_result = text_pre[now_step, :, :]
|
||||
# out_res[now_step] = tmp_result
|
||||
# tmp_result = tmp_result.topk(1)[1].squeeze(axis=1)
|
||||
# for j in range(b):
|
||||
# if out_length[j] == 0 and tmp_result[j] == 0:
|
||||
# out_length[j] = now_step + 1
|
||||
# now_step += 1
|
||||
# for j in range(0, b):
|
||||
# if int(out_length[j]) == 0:
|
||||
# out_length[j] = nsteps
|
||||
# start = 0
|
||||
# output = paddle.zeros(
|
||||
# shape=[int(out_length.sum()), self.nclass], dtype=x.dtype)
|
||||
# for i in range(0, b):
|
||||
# cur_length = int(out_length[i])
|
||||
# output[start:start + cur_length] = out_res[0:cur_length, i, :]
|
||||
# start += cur_length
|
||||
# net_out = output
|
||||
# length = out_length
|
||||
|
||||
# else: # train mode
|
||||
# net_out = preds[0]
|
||||
# length = length
|
||||
# net_out = paddle.concat([t[:l] for t, l in zip(net_out, length)])
|
||||
# text = []
|
||||
# if not isinstance(net_out, paddle.Tensor):
|
||||
# net_out = paddle.to_tensor(net_out, dtype='float32')
|
||||
# net_out = F.softmax(net_out, axis=1)
|
||||
# for i in range(0, length.shape[0]):
|
||||
# preds_idx = net_out[int(length[:i].sum()):int(length[:i].sum(
|
||||
# ) + length[i])].topk(1)[1][:, 0].tolist()
|
||||
# preds_text = ''.join([
|
||||
# self.character[idx - 1]
|
||||
# if idx > 0 and idx <= len(self.character) else ''
|
||||
# for idx in preds_idx
|
||||
# ])
|
||||
# preds_prob = net_out[int(length[:i].sum()):int(length[:i].sum(
|
||||
# ) + length[i])].topk(1)[0][:, 0]
|
||||
# preds_prob = paddle.exp(
|
||||
# paddle.log(preds_prob).sum() / (preds_prob.shape[0] + 1e-6))
|
||||
# text.append((preds_text, preds_prob.numpy()[0]))
|
||||
# if label is None:
|
||||
# return text
|
||||
# label = self.decode(label)
|
||||
# return text, label
|
||||
|
||||
@@ -1,2 +1,6 @@
|
||||
https://github.com/airockchip/rknn-toolkit2/raw/v2.0.0-beta0/rknn-toolkit-lite2/packages/rknn_toolkit_lite2-2.0.0b0-cp310-cp310-linux_aarch64.whl
|
||||
pillow==10.3.0
|
||||
pillow==10.3.0
|
||||
six==1.16.0
|
||||
shapely== 2.0.4
|
||||
pyclipper==1.3.0.post5
|
||||
opencv-python-headless==4.9.0.80
|
||||
@@ -2,8 +2,8 @@ import asyncio
|
||||
import concurrent.futures
|
||||
import os
|
||||
import platform
|
||||
import queue
|
||||
import threading
|
||||
import traceback
|
||||
from typing import Any, Coroutine, List, Tuple
|
||||
import urllib.request
|
||||
|
||||
@@ -14,9 +14,14 @@ from rknnlite.api import RKNNLite
|
||||
from predict import PredictPlugin, Prediction
|
||||
from predict.rectangle import Rectangle
|
||||
|
||||
import scrypted_sdk
|
||||
from scrypted_sdk import DeviceProvider, ScryptedDeviceType, ScryptedInterface
|
||||
|
||||
# for Rockchip-optimized models, the postprocessing is slightly different from the original models
|
||||
from .optimized.yolo import post_process, IMG_SIZE, CLASSES
|
||||
|
||||
from .text_recognition import TEXT_RECOGNITION_NATIVE_ID, TextRecognition
|
||||
|
||||
|
||||
rknn_verbose = False
|
||||
lib_download = 'https://github.com/airockchip/rknn-toolkit2/raw/v2.0.0-beta0/rknpu2/runtime/Linux/librknn_api/aarch64/librknnrt.so'
|
||||
@@ -53,13 +58,16 @@ def ensure_compatibility_and_get_cpu():
|
||||
raise
|
||||
|
||||
|
||||
class RKNNPlugin(PredictPlugin):
|
||||
class RKNNPlugin(PredictPlugin, DeviceProvider):
|
||||
labels = {i: CLASSES[i] for i in range(len(CLASSES))}
|
||||
rknn_runtimes: dict
|
||||
executor: concurrent.futures.ThreadPoolExecutor
|
||||
text_recognition: TextRecognition = None
|
||||
cpu: str
|
||||
|
||||
def __init__(self, nativeId=None):
|
||||
super().__init__(nativeId)
|
||||
cpu = ensure_compatibility_and_get_cpu()
|
||||
self.cpu = ensure_compatibility_and_get_cpu()
|
||||
model = 'yolov6n'
|
||||
|
||||
self.rknn_runtimes = {}
|
||||
@@ -72,7 +80,7 @@ class RKNNPlugin(PredictPlugin):
|
||||
else:
|
||||
raise RuntimeError('librknnrt.so not found. Please download it from {} and place it at {}'.format(lib_download, lib_path))
|
||||
|
||||
model_download = model_download_tmpl.format(model, cpu)
|
||||
model_download = model_download_tmpl.format(model, self.cpu)
|
||||
model_file = os.path.basename(model_download)
|
||||
model_path = self.downloadFile(model_download, model_file)
|
||||
print('Using model {}'.format(model_path))
|
||||
@@ -101,7 +109,33 @@ class RKNNPlugin(PredictPlugin):
|
||||
self.rknn_runtimes[thread_name] = rknn
|
||||
print('RKNNLite runtime initialized on thread {}'.format(thread_name))
|
||||
|
||||
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=3, initializer=executor_initializer)
|
||||
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=3, thread_name_prefix=type(self).__name__, initializer=executor_initializer)
|
||||
|
||||
asyncio.create_task(self.discoverRecognitionModels())
|
||||
|
||||
async def discoverRecognitionModels(self) -> None:
|
||||
devices = [
|
||||
{
|
||||
"nativeId": TEXT_RECOGNITION_NATIVE_ID,
|
||||
"name": "Rockchip NPU Text Recognition",
|
||||
"type": ScryptedDeviceType.API.value,
|
||||
"interfaces": [
|
||||
ScryptedInterface.ObjectDetection.value,
|
||||
],
|
||||
}
|
||||
]
|
||||
await scrypted_sdk.deviceManager.onDevicesChanged({
|
||||
"devices": devices,
|
||||
})
|
||||
|
||||
async def getDevice(self, nativeId: str) -> TextRecognition:
|
||||
try:
|
||||
if nativeId == TEXT_RECOGNITION_NATIVE_ID:
|
||||
self.text_recognition = self.text_recognition or TextRecognition(nativeId, self.cpu)
|
||||
return self.text_recognition
|
||||
except:
|
||||
traceback.print_exc()
|
||||
raise
|
||||
|
||||
def get_input_details(self) -> Tuple[int]:
|
||||
return (IMG_SIZE[0], IMG_SIZE[1], 3)
|
||||
|
||||
264
plugins/rknn/src/rknn/text_recognition.py
Normal file
264
plugins/rknn/src/rknn/text_recognition.py
Normal file
@@ -0,0 +1,264 @@
|
||||
import asyncio
|
||||
import concurrent.futures
|
||||
import math
|
||||
import os
|
||||
import threading
|
||||
import traceback
|
||||
from typing import Any, Callable, List
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image, ImageOps
|
||||
from rknnlite.api import RKNNLite
|
||||
|
||||
from common.text import skew_image, crop_text, calculate_y_change
|
||||
from predict import Prediction
|
||||
from predict.rectangle import Rectangle
|
||||
from predict.text_recognize import TextRecognition
|
||||
import scrypted_sdk
|
||||
from scrypted_sdk.types import ObjectsDetected, ObjectDetectionResult
|
||||
import det_utils.operators
|
||||
import det_utils.db_postprocess
|
||||
import rec_utils.operators
|
||||
import rec_utils.rec_postprocess
|
||||
|
||||
|
||||
TEXT_RECOGNITION_NATIVE_ID = "textrecognition"
|
||||
DET_IMG_SIZE = (480, 480)
|
||||
|
||||
RKNN_DET_PREPROCESS_CONFIG = [
|
||||
{
|
||||
'DetResizeForTest': {
|
||||
'image_shape': DET_IMG_SIZE
|
||||
}
|
||||
},
|
||||
{
|
||||
'NormalizeImage': {
|
||||
'std': [1., 1., 1.],
|
||||
'mean': [0., 0., 0.],
|
||||
'scale': '1.',
|
||||
'order': 'hwc'
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
RKNN_DET_POSTPROCESS_CONFIG = {
|
||||
'DBPostProcess': {
|
||||
'thresh': 0.3,
|
||||
'box_thresh': 0.6,
|
||||
'max_candidates': 1000,
|
||||
'unclip_ratio': 1.5,
|
||||
'use_dilation': False,
|
||||
'score_mode': 'fast',
|
||||
}
|
||||
}
|
||||
|
||||
RKNN_REC_PREPROCESS_CONFIG = [
|
||||
{
|
||||
'NormalizeImage': {
|
||||
'std': [1, 1, 1],
|
||||
'mean': [0, 0, 0],
|
||||
'scale': '1./255.',
|
||||
'order': 'hwc'
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
RKNN_REC_POSTPROCESS_CONFIG = {
|
||||
'CTCLabelDecode':{
|
||||
"character_dict_path": None, # will be replaced by RKNNDetection.__init__()
|
||||
"use_space_char": True
|
||||
}
|
||||
}
|
||||
|
||||
rknn_verbose = False
|
||||
model_download_tmpl = 'https://github.com/bjia56/scrypted-rknn/raw/main/models/{}_{}.rknn'
|
||||
chardict_link = 'https://github.com/bjia56/scrypted-rknn/raw/main/models/ppocr_keys_v1.txt'
|
||||
|
||||
|
||||
class RKNNText:
|
||||
model_path: str
|
||||
rknn_runtimes: dict
|
||||
executor: concurrent.futures.ThreadPoolExecutor
|
||||
preprocess_funcs: List[Callable]
|
||||
postprocess_func: Callable
|
||||
print: Callable
|
||||
|
||||
def __init__(self, model_path, print) -> None:
|
||||
self.model_path = model_path
|
||||
self.rknn_runtimes = {}
|
||||
self.print = print
|
||||
|
||||
if not self.model_path:
|
||||
raise ValueError('model_path is not set')
|
||||
|
||||
def executor_initializer():
|
||||
thread_name = threading.current_thread().name
|
||||
rknn = RKNNLite(verbose=rknn_verbose)
|
||||
ret = rknn.load_rknn(self.model_path)
|
||||
if ret != 0:
|
||||
raise RuntimeError('Failed to load model: {}'.format(ret))
|
||||
|
||||
ret = rknn.init_runtime()
|
||||
if ret != 0:
|
||||
raise RuntimeError('Failed to init runtime: {}'.format(ret))
|
||||
|
||||
self.rknn_runtimes[thread_name] = rknn
|
||||
self.print('RKNNLite runtime initialized on thread {}'.format(thread_name))
|
||||
|
||||
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=3, thread_name_prefix=type(self).__name__, initializer=executor_initializer)
|
||||
|
||||
def detect(self, img):
|
||||
def do_detect(img):
|
||||
model_input = img
|
||||
for p in self.preprocess_funcs:
|
||||
model_input = p(model_input)
|
||||
|
||||
rknn = self.rknn_runtimes[threading.current_thread().name]
|
||||
output = rknn.inference(inputs=[np.expand_dims(model_input['image'], axis=0)])
|
||||
|
||||
return self.postprocess_func(output, model_input['shape'], model_input['image'].shape)
|
||||
|
||||
future = self.executor.submit(do_detect, {'image': img, 'shape': img.shape})
|
||||
return future
|
||||
|
||||
|
||||
class RKNNDetection(RKNNText):
|
||||
db_preprocess = None
|
||||
det_postprocess = None
|
||||
|
||||
def __init__(self, model_path, print):
|
||||
super().__init__(model_path, print)
|
||||
|
||||
self.preprocess_funcs = []
|
||||
for item in RKNN_DET_PREPROCESS_CONFIG:
|
||||
for key in item:
|
||||
pclass = getattr(det_utils.operators, key)
|
||||
p = pclass(**item[key])
|
||||
self.preprocess_funcs.append(p)
|
||||
|
||||
self.db_postprocess = det_utils.db_postprocess.DBPostProcess(**RKNN_DET_POSTPROCESS_CONFIG['DBPostProcess'])
|
||||
self.det_postprocess = det_utils.db_postprocess.DetPostProcess()
|
||||
|
||||
def postprocess(output, model_shape, img_shape):
|
||||
preds = {'maps': output[0].astype(np.float32)}
|
||||
result = self.db_postprocess(preds, model_shape)
|
||||
return self.det_postprocess.filter_tag_det_res(result[0]['points'], img_shape)
|
||||
self.postprocess_func = postprocess
|
||||
|
||||
|
||||
class RKNNRecognition(RKNNText):
|
||||
ctc_postprocess = None
|
||||
|
||||
def __init__(self, model_path, print):
|
||||
super().__init__(model_path, print)
|
||||
|
||||
self.preprocess_funcs = []
|
||||
for item in RKNN_REC_PREPROCESS_CONFIG:
|
||||
for key in item:
|
||||
pclass = getattr(rec_utils.operators, key)
|
||||
p = pclass(**item[key])
|
||||
self.preprocess_funcs.append(p)
|
||||
|
||||
self.ctc_postprocess = rec_utils.rec_postprocess.CTCLabelDecode(**RKNN_REC_POSTPROCESS_CONFIG['CTCLabelDecode'])
|
||||
|
||||
def postprocess(output, model_shape, img_shape):
|
||||
preds = output[0].astype(np.float32)
|
||||
output = self.ctc_postprocess(preds)
|
||||
return output
|
||||
self.postprocess_func = postprocess
|
||||
|
||||
|
||||
async def prepare_text_result(d: ObjectDetectionResult, image: scrypted_sdk.Image, skew_angle: float):
|
||||
textImage = await crop_text(d, image)
|
||||
|
||||
skew_height_change = calculate_y_change(d["boundingBox"][3], skew_angle)
|
||||
skew_height_change = math.floor(skew_height_change)
|
||||
textImage = skew_image(textImage, skew_angle)
|
||||
# crop skew_height_change from top
|
||||
if skew_height_change > 0:
|
||||
textImage = textImage.crop((0, 0, textImage.width, textImage.height - skew_height_change))
|
||||
elif skew_height_change < 0:
|
||||
textImage = textImage.crop((0, -skew_height_change, textImage.width, textImage.height))
|
||||
|
||||
new_height = 48
|
||||
new_width = int(textImage.width * new_height / textImage.height)
|
||||
textImage = textImage.resize((new_width, new_height), resample=Image.LANCZOS).convert("L")
|
||||
|
||||
new_width = 320
|
||||
# calculate padding dimensions
|
||||
padding = (0, 0, new_width - textImage.width, 0)
|
||||
# todo: clamp entire edge rather than just center
|
||||
edge_color = textImage.getpixel((textImage.width - 1, textImage.height // 2))
|
||||
# pad image
|
||||
textImage = ImageOps.expand(textImage, padding, fill=edge_color)
|
||||
# pil to numpy
|
||||
image_array = np.array(textImage)
|
||||
image_array = image_array.reshape(textImage.height, textImage.width, 1)
|
||||
image_tensor = image_array#.transpose((2, 0, 1)) / 255
|
||||
|
||||
# test normalize contrast
|
||||
# image_tensor = (image_tensor - np.min(image_tensor)) / (np.max(image_tensor) - np.min(image_tensor))
|
||||
|
||||
image_tensor = (image_tensor - 0.5) / 0.5
|
||||
|
||||
return image_tensor
|
||||
|
||||
|
||||
class TextRecognition(TextRecognition):
|
||||
detection: RKNNDetection
|
||||
recognition: RKNNRecognition
|
||||
|
||||
def __init__(self, nativeId=None, cpu=""):
|
||||
super().__init__(nativeId)
|
||||
|
||||
model_download = model_download_tmpl.format("ppocrv4_det", cpu)
|
||||
model_file = os.path.basename(model_download)
|
||||
det_model_path = self.downloadFile(model_download, model_file)
|
||||
|
||||
model_download = model_download_tmpl.format("ppocrv4_rec", cpu)
|
||||
model_file = os.path.basename(model_download)
|
||||
rec_model_path = self.downloadFile(model_download, model_file)
|
||||
|
||||
chardict_file = os.path.basename(chardict_link)
|
||||
chardict_path = self.downloadFile(chardict_link, chardict_file)
|
||||
RKNN_REC_POSTPROCESS_CONFIG['CTCLabelDecode']['character_dict_path'] = chardict_path
|
||||
|
||||
self.detection = RKNNDetection(det_model_path, lambda *args, **kwargs: self.print(*args, **kwargs))
|
||||
self.recognition = RKNNRecognition(rec_model_path, lambda *args, **kwargs: self.print(*args, **kwargs))
|
||||
self.inputheight = DET_IMG_SIZE[0]
|
||||
self.inputwidth = DET_IMG_SIZE[1]
|
||||
|
||||
async def detect_once(self, input: Image, settings: Any, src_size, cvss) -> ObjectsDetected:
|
||||
detections = await asyncio.wrap_future(
|
||||
self.detection.detect(np.array(input)), loop=asyncio.get_event_loop()
|
||||
)
|
||||
|
||||
#self.print(detections)
|
||||
|
||||
predictions: List[Prediction] = []
|
||||
for box in detections:
|
||||
#self.print(box)
|
||||
tl, tr, br, bl = box
|
||||
l = min(tl[0], bl[0])
|
||||
t = min(tl[1], tr[1])
|
||||
r = max(tr[0], br[0])
|
||||
b = max(bl[1], br[1])
|
||||
|
||||
pred = Prediction(0, 1, Rectangle(l, t, r, b))
|
||||
predictions.append(pred)
|
||||
|
||||
return self.create_detection_result(predictions, src_size, cvss)
|
||||
|
||||
async def setLabel(
|
||||
self, d: ObjectDetectionResult, image: scrypted_sdk.Image, skew_angle: float
|
||||
):
|
||||
try:
|
||||
image_tensor = await prepare_text_result(d, image, skew_angle)
|
||||
preds = await asyncio.wrap_future(
|
||||
self.recognition.detect(image_tensor), loop=asyncio.get_event_loop()
|
||||
)
|
||||
#self.print("preds", preds)
|
||||
d["label"] = preds[0][0]
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
pass
|
||||
@@ -1,40 +1,27 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
from asyncio import Future
|
||||
import base64
|
||||
from typing import Any, Tuple, List
|
||||
import traceback
|
||||
from asyncio import Future
|
||||
from typing import Any, List, Tuple
|
||||
|
||||
import numpy as np
|
||||
import scrypted_sdk
|
||||
from PIL import Image
|
||||
from scrypted_sdk import (
|
||||
ObjectDetectionSession,
|
||||
ObjectsDetected,
|
||||
ObjectDetectionResult,
|
||||
)
|
||||
import traceback
|
||||
from scrypted_sdk import (ObjectDetectionResult, ObjectDetectionSession,
|
||||
ObjectsDetected)
|
||||
|
||||
from predict import PredictPlugin
|
||||
from common import yolo
|
||||
from predict import PredictPlugin
|
||||
|
||||
def euclidean_distance(arr1, arr2):
|
||||
return np.linalg.norm(arr1 - arr2)
|
||||
|
||||
|
||||
def cosine_similarity(vector_a, vector_b):
|
||||
dot_product = np.dot(vector_a, vector_b)
|
||||
norm_a = np.linalg.norm(vector_a)
|
||||
norm_b = np.linalg.norm(vector_b)
|
||||
similarity = dot_product / (norm_a * norm_b)
|
||||
return similarity
|
||||
|
||||
class FaceRecognizeDetection(PredictPlugin):
|
||||
def __init__(self, nativeId: str | None = None):
|
||||
super().__init__(nativeId=nativeId)
|
||||
|
||||
self.inputheight = 640
|
||||
self.inputwidth = 640
|
||||
self.inputheight = 320
|
||||
self.inputwidth = 320
|
||||
|
||||
self.labels = {
|
||||
0: "face",
|
||||
@@ -44,7 +31,7 @@ class FaceRecognizeDetection(PredictPlugin):
|
||||
self.loop = asyncio.get_event_loop()
|
||||
self.minThreshold = 0.7
|
||||
|
||||
self.detectModel = self.downloadModel("scrypted_yolov9c_flt")
|
||||
self.detectModel = self.downloadModel("scrypted_yolov8n_flt_320")
|
||||
self.faceModel = self.downloadModel("inception_resnet_v1")
|
||||
|
||||
def downloadModel(self, model: str):
|
||||
@@ -99,11 +86,11 @@ class FaceRecognizeDetection(PredictPlugin):
|
||||
|
||||
traceback.print_exc()
|
||||
pass
|
||||
|
||||
|
||||
async def predictDetectModel(self, input: Image.Image):
|
||||
pass
|
||||
|
||||
async def predictFaceModel(self, input: np.ndarray):
|
||||
async def predictFaceModel(self, prepareTensor):
|
||||
pass
|
||||
|
||||
async def run_detection_image(
|
||||
@@ -168,23 +155,4 @@ class FaceRecognizeDetection(PredictPlugin):
|
||||
if len(futures):
|
||||
await asyncio.wait(futures)
|
||||
|
||||
last = None
|
||||
for d in ret['detections']:
|
||||
if d["className"] != "face":
|
||||
continue
|
||||
check = d.get("embedding")
|
||||
if check is None:
|
||||
continue
|
||||
# decode base64 string check
|
||||
embedding = base64.b64decode(check)
|
||||
embedding = np.frombuffer(embedding, dtype=np.float32)
|
||||
if last is None:
|
||||
last = embedding
|
||||
continue
|
||||
# convert to numpy float32 arrays
|
||||
similarity = cosine_similarity(last, embedding)
|
||||
print('similarity', similarity)
|
||||
last = embedding
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
26
plugins/unifi-protect/package-lock.json
generated
26
plugins/unifi-protect/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@scrypted/unifi-protect",
|
||||
"version": "0.0.146",
|
||||
"version": "0.0.149",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@scrypted/unifi-protect",
|
||||
"version": "0.0.146",
|
||||
"version": "0.0.149",
|
||||
"license": "Apache",
|
||||
"dependencies": {
|
||||
"@koush/unifi-protect": "file:../../external/unifi-protect",
|
||||
@@ -27,12 +27,12 @@
|
||||
"dependencies": {
|
||||
"@scrypted/sdk": "file:../sdk",
|
||||
"@scrypted/server": "file:../server",
|
||||
"http-auth-utils": "^3.0.2",
|
||||
"node-fetch-commonjs": "^3.1.1",
|
||||
"typescript": "^4.4.3"
|
||||
"http-auth-utils": "^5.0.1",
|
||||
"typescript": "^5.3.3"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/node": "^16.9.0"
|
||||
"@types/node": "^20.11.0",
|
||||
"ts-node": "^10.9.2"
|
||||
}
|
||||
},
|
||||
"../../external/unifi-protect": {
|
||||
@@ -61,12 +61,12 @@
|
||||
},
|
||||
"../../sdk": {
|
||||
"name": "@scrypted/sdk",
|
||||
"version": "0.2.103",
|
||||
"version": "0.3.31",
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@babel/preset-typescript": "^7.18.6",
|
||||
"adm-zip": "^0.4.13",
|
||||
"axios": "^0.21.4",
|
||||
"axios": "^1.6.5",
|
||||
"babel-loader": "^9.1.0",
|
||||
"babel-plugin-const-enum": "^1.1.0",
|
||||
"esbuild": "^0.15.9",
|
||||
@@ -260,10 +260,10 @@
|
||||
"requires": {
|
||||
"@scrypted/sdk": "file:../sdk",
|
||||
"@scrypted/server": "file:../server",
|
||||
"@types/node": "^16.9.0",
|
||||
"http-auth-utils": "^3.0.2",
|
||||
"node-fetch-commonjs": "^3.1.1",
|
||||
"typescript": "^4.4.3"
|
||||
"@types/node": "^20.11.0",
|
||||
"http-auth-utils": "^5.0.1",
|
||||
"ts-node": "^10.9.2",
|
||||
"typescript": "^5.3.3"
|
||||
}
|
||||
},
|
||||
"@scrypted/sdk": {
|
||||
@@ -273,7 +273,7 @@
|
||||
"@types/node": "^18.11.18",
|
||||
"@types/stringify-object": "^4.0.0",
|
||||
"adm-zip": "^0.4.13",
|
||||
"axios": "^0.21.4",
|
||||
"axios": "^1.6.5",
|
||||
"babel-loader": "^9.1.0",
|
||||
"babel-plugin-const-enum": "^1.1.0",
|
||||
"esbuild": "^0.15.9",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@scrypted/unifi-protect",
|
||||
"version": "0.0.146",
|
||||
"version": "0.0.149",
|
||||
"description": "Unifi Protect Plugin for Scrypted",
|
||||
"author": "Scrypted",
|
||||
"license": "Apache",
|
||||
|
||||
@@ -157,10 +157,11 @@ export class UnifiProtect extends ScryptedDeviceBase implements Settings, Device
|
||||
const payload = updatePacket.payload as ProtectNvrUpdatePayloadEventAdd;
|
||||
if (!payload.camera)
|
||||
return;
|
||||
const unifiCamera = this.cameras.get(payload.camera);
|
||||
const nativeId = this.getNativeId({ id: payload.camera }, false);
|
||||
const unifiCamera = this.cameras.get(nativeId);
|
||||
|
||||
if (!unifiCamera) {
|
||||
this.console.log('unknown device event, sync needed?', payload.camera);
|
||||
this.console.log('unknown device event, sync needed?', payload);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -195,7 +196,7 @@ export class UnifiProtect extends ScryptedDeviceBase implements Settings, Device
|
||||
// id: '661d86bf03e69c03e408d62a',
|
||||
// modelKey: 'event'
|
||||
// }
|
||||
|
||||
|
||||
if (payload.type === 'smartDetectZone' || payload.type === 'smartDetectLine') {
|
||||
unifiCamera.resetDetectionTimeout();
|
||||
|
||||
@@ -602,7 +603,7 @@ export class UnifiProtect extends ScryptedDeviceBase implements Settings, Device
|
||||
return this.storageSettings.values.idMaps.nativeId?.[nativeId] || nativeId;
|
||||
}
|
||||
|
||||
getNativeId(device: any, update: boolean) {
|
||||
getNativeId(device: { id?: string, mac?: string; anonymousDeviceId?: string }, update: boolean) {
|
||||
const { id, mac, anonymousDeviceId } = device;
|
||||
const idMaps = this.storageSettings.values.idMaps;
|
||||
|
||||
|
||||
@@ -68,7 +68,7 @@ async function setupRtspClient(console: Console, rtspClient: RtspClient, channel
|
||||
path: section.control,
|
||||
onRtp: (rtspHeader, rtp) => deliver(rtp),
|
||||
});
|
||||
console.log('rtsp/udp', section.codec, result);
|
||||
// console.log('rtsp/udp', section.codec, result);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@@ -82,7 +82,7 @@ async function setupRtspClient(console: Console, rtspClient: RtspClient, channel
|
||||
path: section.control,
|
||||
onRtp: (rtspHeader, rtp) => deliver(rtp),
|
||||
});
|
||||
console.log('rtsp/tcp', section.codec);
|
||||
// console.log('rtsp/tcp', section.codec);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
4
sdk/package-lock.json
generated
4
sdk/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@scrypted/sdk",
|
||||
"version": "0.3.29",
|
||||
"version": "0.3.31",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@scrypted/sdk",
|
||||
"version": "0.3.29",
|
||||
"version": "0.3.31",
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@babel/preset-typescript": "^7.18.6",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@scrypted/sdk",
|
||||
"version": "0.3.29",
|
||||
"version": "0.3.31",
|
||||
"description": "",
|
||||
"main": "dist/src/index.js",
|
||||
"exports": {
|
||||
|
||||
4
sdk/types/package-lock.json
generated
4
sdk/types/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@scrypted/types",
|
||||
"version": "0.3.28",
|
||||
"version": "0.3.30",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@scrypted/types",
|
||||
"version": "0.3.28",
|
||||
"version": "0.3.30",
|
||||
"license": "ISC",
|
||||
"devDependencies": {
|
||||
"@types/node": "^18.19.15",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@scrypted/types",
|
||||
"version": "0.3.28",
|
||||
"version": "0.3.30",
|
||||
"description": "",
|
||||
"main": "dist/index.js",
|
||||
"author": "",
|
||||
|
||||
@@ -311,6 +311,7 @@ class ObjectDetectionResult(TypedDict):
|
||||
history: ObjectDetectionHistory
|
||||
id: str # The id of the tracked object.
|
||||
label: str # The label of the object, if it was recognized as a familiar object (person, pet, etc).
|
||||
labelScore: float # The score of the label.
|
||||
landmarks: list[Point] # The detection landmarks, like key points in a face landmarks.
|
||||
movement: Union[ObjectDetectionHistory, Any] # Movement history will track the first/last time this object was moving.
|
||||
resources: VideoResource
|
||||
|
||||
@@ -1347,6 +1347,10 @@ export interface ObjectDetectionResult extends BoundingBoxResult {
|
||||
* The label of the object, if it was recognized as a familiar object (person, pet, etc).
|
||||
*/
|
||||
label?: string;
|
||||
/**
|
||||
* The score of the label.
|
||||
*/
|
||||
labelScore?: number;
|
||||
/**
|
||||
* A base64 encoded Float32Array that represents the vector descriptor of the detection.
|
||||
* Can be used to compute euclidian distance to determine similarity.
|
||||
|
||||
249
server/package-lock.json
generated
249
server/package-lock.json
generated
@@ -1,19 +1,18 @@
|
||||
{
|
||||
"name": "@scrypted/server",
|
||||
"version": "0.103.3",
|
||||
"version": "0.108.0",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@scrypted/server",
|
||||
"version": "0.103.3",
|
||||
"version": "0.108.0",
|
||||
"hasInstallScript": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@mapbox/node-pre-gyp": "^1.0.11",
|
||||
"@scrypted/ffmpeg-static": "^6.1.0-build1",
|
||||
"@scrypted/node-pty": "^1.0.10",
|
||||
"@scrypted/types": "^0.3.28",
|
||||
"@scrypted/types": "^0.3.30",
|
||||
"adm-zip": "^0.5.12",
|
||||
"body-parser": "^1.20.2",
|
||||
"cookie-parser": "^1.4.6",
|
||||
@@ -29,12 +28,12 @@
|
||||
"node-dijkstra": "^2.5.0",
|
||||
"node-forge": "^1.3.1",
|
||||
"node-gyp": "^10.1.0",
|
||||
"py": "npm:@bjia56/portable-python@^0.1.31",
|
||||
"py": "npm:@bjia56/portable-python@^0.1.47",
|
||||
"router": "^1.3.8",
|
||||
"semver": "^7.6.2",
|
||||
"sharp": "^0.33.3",
|
||||
"sharp": "^0.33.4",
|
||||
"source-map-support": "^0.5.21",
|
||||
"tar": "^7.1.0",
|
||||
"tar": "^7.2.0",
|
||||
"tslib": "^2.6.2",
|
||||
"typescript": "^5.4.5",
|
||||
"whatwg-mimetype": "^4.0.0",
|
||||
@@ -50,28 +49,31 @@
|
||||
"@types/follow-redirects": "^1.14.4",
|
||||
"@types/http-auth": "^4.1.4",
|
||||
"@types/ip": "^1.1.3",
|
||||
"@types/lodash": "^4.17.1",
|
||||
"@types/lodash": "^4.17.4",
|
||||
"@types/node-dijkstra": "^2.5.6",
|
||||
"@types/node-forge": "^1.3.11",
|
||||
"@types/semver": "^7.5.8",
|
||||
"@types/source-map-support": "^0.5.10",
|
||||
"@types/whatwg-mimetype": "^3.0.2",
|
||||
"@types/ws": "^8.5.10"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@scrypted/node-pty": "^1.0.11"
|
||||
}
|
||||
},
|
||||
"node_modules/@emnapi/runtime": {
|
||||
"version": "1.1.1",
|
||||
"resolved": "https://registry.npmjs.org/@emnapi/runtime/-/runtime-1.1.1.tgz",
|
||||
"integrity": "sha512-3bfqkzuR1KLx57nZfjr2NLnFOobvyS0aTszaEGCGqmYMVDRaGvgIZbjGSV/MHSSmLgQ/b9JFHQ5xm5WRZYd+XQ==",
|
||||
"version": "1.2.0",
|
||||
"resolved": "https://registry.npmjs.org/@emnapi/runtime/-/runtime-1.2.0.tgz",
|
||||
"integrity": "sha512-bV21/9LQmcQeCPEg3BDFtvwL6cwiTMksYNWQQ4KOxCZikEGalWtenoZ0wCiukJINlGCIi2KXx01g4FoH/LxpzQ==",
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"tslib": "^2.4.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@img/sharp-darwin-arm64": {
|
||||
"version": "0.33.3",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-darwin-arm64/-/sharp-darwin-arm64-0.33.3.tgz",
|
||||
"integrity": "sha512-FaNiGX1MrOuJ3hxuNzWgsT/mg5OHG/Izh59WW2mk1UwYHUwtfbhk5QNKYZgxf0pLOhx9ctGiGa2OykD71vOnSw==",
|
||||
"version": "0.33.4",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-darwin-arm64/-/sharp-darwin-arm64-0.33.4.tgz",
|
||||
"integrity": "sha512-p0suNqXufJs9t3RqLBO6vvrgr5OhgbWp76s5gTRvdmxmuv9E1rcaqGUsl3l4mKVmXPkTkTErXediAui4x+8PSA==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -94,9 +96,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@img/sharp-darwin-x64": {
|
||||
"version": "0.33.3",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-darwin-x64/-/sharp-darwin-x64-0.33.3.tgz",
|
||||
"integrity": "sha512-2QeSl7QDK9ru//YBT4sQkoq7L0EAJZA3rtV+v9p8xTKl4U1bUqTIaCnoC7Ctx2kCjQgwFXDasOtPTCT8eCTXvw==",
|
||||
"version": "0.33.4",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-darwin-x64/-/sharp-darwin-x64-0.33.4.tgz",
|
||||
"integrity": "sha512-0l7yRObwtTi82Z6ebVI2PnHT8EB2NxBgpK2MiKJZJ7cz32R4lxd001ecMhzzsZig3Yv9oclvqqdV93jo9hy+Dw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -287,9 +289,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@img/sharp-linux-arm": {
|
||||
"version": "0.33.3",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-linux-arm/-/sharp-linux-arm-0.33.3.tgz",
|
||||
"integrity": "sha512-Q7Ee3fFSC9P7vUSqVEF0zccJsZ8GiiCJYGWDdhEjdlOeS9/jdkyJ6sUSPj+bL8VuOYFSbofrW0t/86ceVhx32w==",
|
||||
"version": "0.33.4",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-linux-arm/-/sharp-linux-arm-0.33.4.tgz",
|
||||
"integrity": "sha512-RUgBD1c0+gCYZGCCe6mMdTiOFS0Zc/XrN0fYd6hISIKcDUbAW5NtSQW9g/powkrXYm6Vzwd6y+fqmExDuCdHNQ==",
|
||||
"cpu": [
|
||||
"arm"
|
||||
],
|
||||
@@ -312,9 +314,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@img/sharp-linux-arm64": {
|
||||
"version": "0.33.3",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-linux-arm64/-/sharp-linux-arm64-0.33.3.tgz",
|
||||
"integrity": "sha512-Zf+sF1jHZJKA6Gor9hoYG2ljr4wo9cY4twaxgFDvlG0Xz9V7sinsPp8pFd1XtlhTzYo0IhDbl3rK7P6MzHpnYA==",
|
||||
"version": "0.33.4",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-linux-arm64/-/sharp-linux-arm64-0.33.4.tgz",
|
||||
"integrity": "sha512-2800clwVg1ZQtxwSoTlHvtm9ObgAax7V6MTAB/hDT945Tfyy3hVkmiHpeLPCKYqYR1Gcmv1uDZ3a4OFwkdBL7Q==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -337,9 +339,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@img/sharp-linux-s390x": {
|
||||
"version": "0.33.3",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-linux-s390x/-/sharp-linux-s390x-0.33.3.tgz",
|
||||
"integrity": "sha512-vFk441DKRFepjhTEH20oBlFrHcLjPfI8B0pMIxGm3+yilKyYeHEVvrZhYFdqIseSclIqbQ3SnZMwEMWonY5XFA==",
|
||||
"version": "0.33.4",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-linux-s390x/-/sharp-linux-s390x-0.33.4.tgz",
|
||||
"integrity": "sha512-h3RAL3siQoyzSoH36tUeS0PDmb5wINKGYzcLB5C6DIiAn2F3udeFAum+gj8IbA/82+8RGCTn7XW8WTFnqag4tQ==",
|
||||
"cpu": [
|
||||
"s390x"
|
||||
],
|
||||
@@ -348,7 +350,7 @@
|
||||
"linux"
|
||||
],
|
||||
"engines": {
|
||||
"glibc": ">=2.28",
|
||||
"glibc": ">=2.31",
|
||||
"node": "^18.17.0 || ^20.3.0 || >=21.0.0",
|
||||
"npm": ">=9.6.5",
|
||||
"pnpm": ">=7.1.0",
|
||||
@@ -362,9 +364,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@img/sharp-linux-x64": {
|
||||
"version": "0.33.3",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-linux-x64/-/sharp-linux-x64-0.33.3.tgz",
|
||||
"integrity": "sha512-Q4I++herIJxJi+qmbySd072oDPRkCg/SClLEIDh5IL9h1zjhqjv82H0Seupd+q2m0yOfD+/fJnjSoDFtKiHu2g==",
|
||||
"version": "0.33.4",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-linux-x64/-/sharp-linux-x64-0.33.4.tgz",
|
||||
"integrity": "sha512-GoR++s0XW9DGVi8SUGQ/U4AeIzLdNjHka6jidVwapQ/JebGVQIpi52OdyxCNVRE++n1FCLzjDovJNozif7w/Aw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -387,9 +389,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@img/sharp-linuxmusl-arm64": {
|
||||
"version": "0.33.3",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-linuxmusl-arm64/-/sharp-linuxmusl-arm64-0.33.3.tgz",
|
||||
"integrity": "sha512-qnDccehRDXadhM9PM5hLvcPRYqyFCBN31kq+ErBSZtZlsAc1U4Z85xf/RXv1qolkdu+ibw64fUDaRdktxTNP9A==",
|
||||
"version": "0.33.4",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-linuxmusl-arm64/-/sharp-linuxmusl-arm64-0.33.4.tgz",
|
||||
"integrity": "sha512-nhr1yC3BlVrKDTl6cO12gTpXMl4ITBUZieehFvMntlCXFzH2bvKG76tBL2Y/OqhupZt81pR7R+Q5YhJxW0rGgQ==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -412,9 +414,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@img/sharp-linuxmusl-x64": {
|
||||
"version": "0.33.3",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-linuxmusl-x64/-/sharp-linuxmusl-x64-0.33.3.tgz",
|
||||
"integrity": "sha512-Jhchim8kHWIU/GZ+9poHMWRcefeaxFIs9EBqf9KtcC14Ojk6qua7ghKiPs0sbeLbLj/2IGBtDcxHyjCdYWkk2w==",
|
||||
"version": "0.33.4",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-linuxmusl-x64/-/sharp-linuxmusl-x64-0.33.4.tgz",
|
||||
"integrity": "sha512-uCPTku0zwqDmZEOi4ILyGdmW76tH7dm8kKlOIV1XC5cLyJ71ENAAqarOHQh0RLfpIpbV5KOpXzdU6XkJtS0daw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -437,15 +439,15 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@img/sharp-wasm32": {
|
||||
"version": "0.33.3",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-wasm32/-/sharp-wasm32-0.33.3.tgz",
|
||||
"integrity": "sha512-68zivsdJ0koE96stdUfM+gmyaK/NcoSZK5dV5CAjES0FUXS9lchYt8LAB5rTbM7nlWtxaU/2GON0HVN6/ZYJAQ==",
|
||||
"version": "0.33.4",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-wasm32/-/sharp-wasm32-0.33.4.tgz",
|
||||
"integrity": "sha512-Bmmauh4sXUsUqkleQahpdNXKvo+wa1V9KhT2pDA4VJGKwnKMJXiSTGphn0gnJrlooda0QxCtXc6RX1XAU6hMnQ==",
|
||||
"cpu": [
|
||||
"wasm32"
|
||||
],
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"@emnapi/runtime": "^1.1.0"
|
||||
"@emnapi/runtime": "^1.1.1"
|
||||
},
|
||||
"engines": {
|
||||
"node": "^18.17.0 || ^20.3.0 || >=21.0.0",
|
||||
@@ -458,9 +460,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@img/sharp-win32-ia32": {
|
||||
"version": "0.33.3",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-win32-ia32/-/sharp-win32-ia32-0.33.3.tgz",
|
||||
"integrity": "sha512-CyimAduT2whQD8ER4Ux7exKrtfoaUiVr7HG0zZvO0XTFn2idUWljjxv58GxNTkFb8/J9Ub9AqITGkJD6ZginxQ==",
|
||||
"version": "0.33.4",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-win32-ia32/-/sharp-win32-ia32-0.33.4.tgz",
|
||||
"integrity": "sha512-99SJ91XzUhYHbx7uhK3+9Lf7+LjwMGQZMDlO/E/YVJ7Nc3lyDFZPGhjwiYdctoH2BOzW9+TnfqcaMKt0jHLdqw==",
|
||||
"cpu": [
|
||||
"ia32"
|
||||
],
|
||||
@@ -479,9 +481,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@img/sharp-win32-x64": {
|
||||
"version": "0.33.3",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-win32-x64/-/sharp-win32-x64-0.33.3.tgz",
|
||||
"integrity": "sha512-viT4fUIDKnli3IfOephGnolMzhz5VaTvDRkYqtZxOMIoMQ4MrAziO7pT1nVnOt2FAm7qW5aa+CCc13aEY6Le0g==",
|
||||
"version": "0.33.4",
|
||||
"resolved": "https://registry.npmjs.org/@img/sharp-win32-x64/-/sharp-win32-x64-0.33.4.tgz",
|
||||
"integrity": "sha512-3QLocdTRVIrFNye5YocZl+KKpYKP+fksi1QhmOArgx7GyhIbQp/WrJRu176jm8IxromS7RIkzMiMINVdBtC8Aw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -702,18 +704,45 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@scrypted/node-pty": {
|
||||
"version": "1.0.10",
|
||||
"resolved": "https://registry.npmjs.org/@scrypted/node-pty/-/node-pty-1.0.10.tgz",
|
||||
"integrity": "sha512-JmcfpDyRuQ5UCCYaG4aaoH7BPfJuc4HzMimYBZOCwy8cmryfHj9vssp6x3XLDoc5WQS/Yp7Uil+qSMdWzAIM6w==",
|
||||
"version": "1.0.11",
|
||||
"resolved": "https://registry.npmjs.org/@scrypted/node-pty/-/node-pty-1.0.11.tgz",
|
||||
"integrity": "sha512-zCw8cFAz0Pd5P42sLeMpSyIO/n93OUjTpEajdd547rXDaZr1tWYF1D7LutO5+FiGI24w6Blplb2Sq1Tw7AWzmA==",
|
||||
"hasInstallScript": true,
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"prebuild-install": "^7.1.2"
|
||||
"@scrypted/prebuild-install": "^7.1.2"
|
||||
}
|
||||
},
|
||||
"node_modules/@scrypted/prebuild-install": {
|
||||
"version": "7.1.3",
|
||||
"resolved": "https://registry.npmjs.org/@scrypted/prebuild-install/-/prebuild-install-7.1.3.tgz",
|
||||
"integrity": "sha512-scL9zHWbAcenhyx8fAv2U+mxrIWCL22VqL1ENOZpCQ7ByWOQERvOpgS4qlSNgXuuDfu+XBoyRvLMZcWIOSI74w==",
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"detect-libc": "^2.0.0",
|
||||
"expand-template": "^2.0.3",
|
||||
"github-from-package": "0.0.0",
|
||||
"minimist": "^1.2.3",
|
||||
"mkdirp-classic": "^0.5.3",
|
||||
"napi-build-utils": "^1.0.1",
|
||||
"node-abi": "^3.3.0",
|
||||
"pump": "^3.0.0",
|
||||
"rc": "^1.2.7",
|
||||
"simple-get": "^4.0.0",
|
||||
"tar-fs": "^2.0.0",
|
||||
"tunnel-agent": "^0.6.0"
|
||||
},
|
||||
"bin": {
|
||||
"prebuild-install": "bin.js"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=10"
|
||||
}
|
||||
},
|
||||
"node_modules/@scrypted/types": {
|
||||
"version": "0.3.28",
|
||||
"resolved": "https://registry.npmjs.org/@scrypted/types/-/types-0.3.28.tgz",
|
||||
"integrity": "sha512-58oF+fIAG6cwxIBvciwHu7cbENxa8y0fwN4IuhhC+JRq3Xqun8TnWDjKOLmah5gfdqfaI3wHTLuZWuOwOEJC5A=="
|
||||
"version": "0.3.30",
|
||||
"resolved": "https://registry.npmjs.org/@scrypted/types/-/types-0.3.30.tgz",
|
||||
"integrity": "sha512-1k+JVSR6WSNmE/5mLdqfrTmV3uRbvZp0OwKb8ikNi39ysBuC000tQGcEdXZqhYqRgWdhDTWtxXe9XsYoAZGKmA=="
|
||||
},
|
||||
"node_modules/@types/adm-zip": {
|
||||
"version": "0.5.5",
|
||||
@@ -817,9 +846,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@types/lodash": {
|
||||
"version": "4.17.1",
|
||||
"resolved": "https://registry.npmjs.org/@types/lodash/-/lodash-4.17.1.tgz",
|
||||
"integrity": "sha512-X+2qazGS3jxLAIz5JDXDzglAF3KpijdhFxlf/V1+hEsOUc+HnWi81L/uv/EvGuV90WY+7mPGFCUDGfQC3Gj95Q==",
|
||||
"version": "4.17.4",
|
||||
"resolved": "https://registry.npmjs.org/@types/lodash/-/lodash-4.17.4.tgz",
|
||||
"integrity": "sha512-wYCP26ZLxaT3R39kiN2+HcJ4kTd3U1waI/cY7ivWYqFP6pW3ZNpvi6Wd6PHZx7T/t8z0vlkXMg3QYLa7DZ/IJQ==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/@types/mime": {
|
||||
@@ -1082,6 +1111,7 @@
|
||||
"version": "4.1.0",
|
||||
"resolved": "https://registry.npmjs.org/bl/-/bl-4.1.0.tgz",
|
||||
"integrity": "sha512-1W07cM9gS6DcLperZfFSj+bWLtaPGSOHWhPiGzXmvVJbRLdG82sH/Kn8EtW1VqWVA54AKf2h5k5BbnIbwF3h6w==",
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"buffer": "^5.5.0",
|
||||
"inherits": "^2.0.4",
|
||||
@@ -1106,6 +1136,7 @@
|
||||
"url": "https://feross.org/support"
|
||||
}
|
||||
],
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"base64-js": "^1.3.1",
|
||||
"ieee754": "^1.1.13"
|
||||
@@ -1559,6 +1590,7 @@
|
||||
"version": "6.0.0",
|
||||
"resolved": "https://registry.npmjs.org/decompress-response/-/decompress-response-6.0.0.tgz",
|
||||
"integrity": "sha512-aW35yZM6Bb/4oJlZncMH2LCoZtJXTRxES17vE3hoRiowU2kWHaJKFkSBDnDR+cm9J+9QhXmREyIfv0pji9ejCQ==",
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"mimic-response": "^3.1.0"
|
||||
},
|
||||
@@ -1573,6 +1605,7 @@
|
||||
"version": "0.6.0",
|
||||
"resolved": "https://registry.npmjs.org/deep-extend/-/deep-extend-0.6.0.tgz",
|
||||
"integrity": "sha512-LOHxIOaPYdHlJRtCQfDIVZtfw/ufM8+rVj649RIHzcm/vGwQRXFt6OPqIFWsm2XEMrNIEtWR64sY1LEKD2vAOA==",
|
||||
"optional": true,
|
||||
"engines": {
|
||||
"node": ">=4.0.0"
|
||||
}
|
||||
@@ -1666,6 +1699,7 @@
|
||||
"version": "1.4.4",
|
||||
"resolved": "https://registry.npmjs.org/end-of-stream/-/end-of-stream-1.4.4.tgz",
|
||||
"integrity": "sha512-+uw1inIHVPQoaVuHzRyXd21icM+cnt4CzD5rW+NC1wjOUSTOs+Te7FOv7AhN7vS9x/oIyhLP5PR1H+phQAHu5Q==",
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"once": "^1.4.0"
|
||||
}
|
||||
@@ -1748,6 +1782,7 @@
|
||||
"version": "2.0.3",
|
||||
"resolved": "https://registry.npmjs.org/expand-template/-/expand-template-2.0.3.tgz",
|
||||
"integrity": "sha512-XYfuKMvj4O35f/pOXLObndIRvyQ+/+6AhODh+OKWj9S9498pHHn/IMszH+gt0fBCRWMNfk1ZSp5x3AifmnI2vg==",
|
||||
"optional": true,
|
||||
"engines": {
|
||||
"node": ">=6"
|
||||
}
|
||||
@@ -1913,7 +1948,8 @@
|
||||
"node_modules/fs-constants": {
|
||||
"version": "1.0.0",
|
||||
"resolved": "https://registry.npmjs.org/fs-constants/-/fs-constants-1.0.0.tgz",
|
||||
"integrity": "sha512-y6OAwoSIf7FyjMIv94u+b5rdheZEjzR63GTyZJm5qh4Bi+2YgwLCcI/fPFZkL5PSixOt6ZNKm+w+Hfp/Bciwow=="
|
||||
"integrity": "sha512-y6OAwoSIf7FyjMIv94u+b5rdheZEjzR63GTyZJm5qh4Bi+2YgwLCcI/fPFZkL5PSixOt6ZNKm+w+Hfp/Bciwow==",
|
||||
"optional": true
|
||||
},
|
||||
"node_modules/fs-minipass": {
|
||||
"version": "2.1.0",
|
||||
@@ -1983,7 +2019,8 @@
|
||||
"node_modules/github-from-package": {
|
||||
"version": "0.0.0",
|
||||
"resolved": "https://registry.npmjs.org/github-from-package/-/github-from-package-0.0.0.tgz",
|
||||
"integrity": "sha512-SyHy3T1v2NUXn29OsWdxmK6RwHD+vkj3v8en8AOBZ1wBQ/hCAQ5bAQTD02kW4W9tUp/3Qh6J8r9EvntiyCmOOw=="
|
||||
"integrity": "sha512-SyHy3T1v2NUXn29OsWdxmK6RwHD+vkj3v8en8AOBZ1wBQ/hCAQ5bAQTD02kW4W9tUp/3Qh6J8r9EvntiyCmOOw==",
|
||||
"optional": true
|
||||
},
|
||||
"node_modules/glob": {
|
||||
"version": "7.2.3",
|
||||
@@ -2179,7 +2216,8 @@
|
||||
"node_modules/ini": {
|
||||
"version": "1.3.8",
|
||||
"resolved": "https://registry.npmjs.org/ini/-/ini-1.3.8.tgz",
|
||||
"integrity": "sha512-JV/yugV2uzW5iMRSiZAyDtQd+nxtUnjeLt0acNdw98kKLrvuRVyB80tsREOE7yvGVgalhZ6RNXCmEHkUKBKxew=="
|
||||
"integrity": "sha512-JV/yugV2uzW5iMRSiZAyDtQd+nxtUnjeLt0acNdw98kKLrvuRVyB80tsREOE7yvGVgalhZ6RNXCmEHkUKBKxew==",
|
||||
"optional": true
|
||||
},
|
||||
"node_modules/ip": {
|
||||
"version": "2.0.1",
|
||||
@@ -2396,6 +2434,7 @@
|
||||
"version": "3.1.0",
|
||||
"resolved": "https://registry.npmjs.org/mimic-response/-/mimic-response-3.1.0.tgz",
|
||||
"integrity": "sha512-z0yWI+4FDrrweS8Zmt4Ej5HdJmky15+L2e6Wgn3+iK5fWzb6T3fhNFq2+MeTRb064c6Wr4N/wv0DzQTjNzHNGQ==",
|
||||
"optional": true,
|
||||
"engines": {
|
||||
"node": ">=10"
|
||||
},
|
||||
@@ -2418,6 +2457,7 @@
|
||||
"version": "1.2.8",
|
||||
"resolved": "https://registry.npmjs.org/minimist/-/minimist-1.2.8.tgz",
|
||||
"integrity": "sha512-2yyAR8qBkN3YuheJanUpWC5U3bb5osDywNB8RzDVlDwDHbocAJveqqj1u8+SVD7jkWT4yvsHCpWqqWqAxb0zCA==",
|
||||
"optional": true,
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/ljharb"
|
||||
}
|
||||
@@ -2574,7 +2614,8 @@
|
||||
"node_modules/mkdirp-classic": {
|
||||
"version": "0.5.3",
|
||||
"resolved": "https://registry.npmjs.org/mkdirp-classic/-/mkdirp-classic-0.5.3.tgz",
|
||||
"integrity": "sha512-gKLcREMhtuZRwRAfqP3RFW+TK4JqApVBtOIftVgjuABpAtpxhPGaDcfvbhNvD0B8iD1oUr/txX35NjcaY6Ns/A=="
|
||||
"integrity": "sha512-gKLcREMhtuZRwRAfqP3RFW+TK4JqApVBtOIftVgjuABpAtpxhPGaDcfvbhNvD0B8iD1oUr/txX35NjcaY6Ns/A==",
|
||||
"optional": true
|
||||
},
|
||||
"node_modules/module-error": {
|
||||
"version": "1.0.2",
|
||||
@@ -2597,7 +2638,8 @@
|
||||
"node_modules/napi-build-utils": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmjs.org/napi-build-utils/-/napi-build-utils-1.0.2.tgz",
|
||||
"integrity": "sha512-ONmRUqK7zj7DWX0D9ADe03wbwOBZxNAfF20PlGfCWQcD3+/MakShIHrMqx9YwPTfxDdF1zLeL+RGZiR9kGMLdg=="
|
||||
"integrity": "sha512-ONmRUqK7zj7DWX0D9ADe03wbwOBZxNAfF20PlGfCWQcD3+/MakShIHrMqx9YwPTfxDdF1zLeL+RGZiR9kGMLdg==",
|
||||
"optional": true
|
||||
},
|
||||
"node_modules/napi-macros": {
|
||||
"version": "2.2.2",
|
||||
@@ -2613,9 +2655,10 @@
|
||||
}
|
||||
},
|
||||
"node_modules/node-abi": {
|
||||
"version": "3.56.0",
|
||||
"resolved": "https://registry.npmjs.org/node-abi/-/node-abi-3.56.0.tgz",
|
||||
"integrity": "sha512-fZjdhDOeRcaS+rcpve7XuwHBmktS1nS1gzgghwKUQQ8nTy2FdSDr6ZT8k6YhvlJeHmmQMYiT/IH9hfco5zeW2Q==",
|
||||
"version": "3.63.0",
|
||||
"resolved": "https://registry.npmjs.org/node-abi/-/node-abi-3.63.0.tgz",
|
||||
"integrity": "sha512-vAszCsOUrUxjGAmdnM/pq7gUgie0IRteCQMX6d4A534fQCR93EJU5qgzBvU6EkFfK27s0T3HEV3BOyJIr7OMYw==",
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"semver": "^7.3.5"
|
||||
},
|
||||
@@ -2914,31 +2957,6 @@
|
||||
"resolved": "https://registry.npmjs.org/path-to-regexp/-/path-to-regexp-0.1.7.tgz",
|
||||
"integrity": "sha512-5DFkuoqlv1uYQKxy8omFBeJPQcdoE07Kv2sferDCrAq1ohOU+MSDswDIbnx3YAM60qIOnYa53wBhXW0EbMonrQ=="
|
||||
},
|
||||
"node_modules/prebuild-install": {
|
||||
"version": "7.1.2",
|
||||
"resolved": "https://registry.npmjs.org/prebuild-install/-/prebuild-install-7.1.2.tgz",
|
||||
"integrity": "sha512-UnNke3IQb6sgarcZIDU3gbMeTp/9SSU1DAIkil7PrqG1vZlBtY5msYccSKSHDqa3hNg436IXK+SNImReuA1wEQ==",
|
||||
"dependencies": {
|
||||
"detect-libc": "^2.0.0",
|
||||
"expand-template": "^2.0.3",
|
||||
"github-from-package": "0.0.0",
|
||||
"minimist": "^1.2.3",
|
||||
"mkdirp-classic": "^0.5.3",
|
||||
"napi-build-utils": "^1.0.1",
|
||||
"node-abi": "^3.3.0",
|
||||
"pump": "^3.0.0",
|
||||
"rc": "^1.2.7",
|
||||
"simple-get": "^4.0.0",
|
||||
"tar-fs": "^2.0.0",
|
||||
"tunnel-agent": "^0.6.0"
|
||||
},
|
||||
"bin": {
|
||||
"prebuild-install": "bin.js"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=10"
|
||||
}
|
||||
},
|
||||
"node_modules/proc-log": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/proc-log/-/proc-log-3.0.0.tgz",
|
||||
@@ -2975,6 +2993,7 @@
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/pump/-/pump-3.0.0.tgz",
|
||||
"integrity": "sha512-LwZy+p3SFs1Pytd/jYct4wpv49HiYCqd9Rlc5ZVdk0V+8Yzv6jR5Blk3TRmPL1ft69TxP0IMZGJ+WPFU2BFhww==",
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"end-of-stream": "^1.1.0",
|
||||
"once": "^1.3.1"
|
||||
@@ -2982,9 +3001,9 @@
|
||||
},
|
||||
"node_modules/py": {
|
||||
"name": "@bjia56/portable-python",
|
||||
"version": "0.1.31",
|
||||
"resolved": "https://registry.npmjs.org/@bjia56/portable-python/-/portable-python-0.1.31.tgz",
|
||||
"integrity": "sha512-dgJUIWz7pY/IYzrMhyWBuSpUE+pYyL/DomlaOS69tH/YJ4blAA73ORTu3mt6zB5IrgcxABECD6y9DZ5PwN+KtQ==",
|
||||
"version": "0.1.47",
|
||||
"resolved": "https://registry.npmjs.org/@bjia56/portable-python/-/portable-python-0.1.47.tgz",
|
||||
"integrity": "sha512-NU7ryvrWLWueRL/3sMBvYOAmuh/zKzHzZkcABK3CCxbrVrHMcmkCo1fta4sEP++NPb/29rEG9oWF/vdyMoOQlg==",
|
||||
"dependencies": {
|
||||
"adm-zip": "^0.5.10"
|
||||
}
|
||||
@@ -3048,6 +3067,7 @@
|
||||
"version": "1.2.8",
|
||||
"resolved": "https://registry.npmjs.org/rc/-/rc-1.2.8.tgz",
|
||||
"integrity": "sha512-y3bGgqKj3QBdxLbLkomlohkvsA8gdAiUQlSBJnBhfn+BPxg4bc62d8TcBW15wavDfgexCgccckhcZvywyQYPOw==",
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"deep-extend": "^0.6.0",
|
||||
"ini": "~1.3.0",
|
||||
@@ -3262,9 +3282,9 @@
|
||||
"integrity": "sha512-E5LDX7Wrp85Kil5bhZv46j8jOeboKq5JMmYM3gVGdGH8xFpPWXUMsNrlODCrkoxMEeNi/XZIwuRvY4XNwYMJpw=="
|
||||
},
|
||||
"node_modules/sharp": {
|
||||
"version": "0.33.3",
|
||||
"resolved": "https://registry.npmjs.org/sharp/-/sharp-0.33.3.tgz",
|
||||
"integrity": "sha512-vHUeXJU1UvlO/BNwTpT0x/r53WkLUVxrmb5JTgW92fdFCFk0ispLMAeu/jPO2vjkXM1fYUi3K7/qcLF47pwM1A==",
|
||||
"version": "0.33.4",
|
||||
"resolved": "https://registry.npmjs.org/sharp/-/sharp-0.33.4.tgz",
|
||||
"integrity": "sha512-7i/dt5kGl7qR4gwPRD2biwD2/SvBn3O04J77XKFgL2OnZtQw+AG9wnuS/csmu80nPRHLYE9E41fyEiG8nhH6/Q==",
|
||||
"hasInstallScript": true,
|
||||
"dependencies": {
|
||||
"color": "^4.2.3",
|
||||
@@ -3279,8 +3299,8 @@
|
||||
"url": "https://opencollective.com/libvips"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@img/sharp-darwin-arm64": "0.33.3",
|
||||
"@img/sharp-darwin-x64": "0.33.3",
|
||||
"@img/sharp-darwin-arm64": "0.33.4",
|
||||
"@img/sharp-darwin-x64": "0.33.4",
|
||||
"@img/sharp-libvips-darwin-arm64": "1.0.2",
|
||||
"@img/sharp-libvips-darwin-x64": "1.0.2",
|
||||
"@img/sharp-libvips-linux-arm": "1.0.2",
|
||||
@@ -3289,15 +3309,15 @@
|
||||
"@img/sharp-libvips-linux-x64": "1.0.2",
|
||||
"@img/sharp-libvips-linuxmusl-arm64": "1.0.2",
|
||||
"@img/sharp-libvips-linuxmusl-x64": "1.0.2",
|
||||
"@img/sharp-linux-arm": "0.33.3",
|
||||
"@img/sharp-linux-arm64": "0.33.3",
|
||||
"@img/sharp-linux-s390x": "0.33.3",
|
||||
"@img/sharp-linux-x64": "0.33.3",
|
||||
"@img/sharp-linuxmusl-arm64": "0.33.3",
|
||||
"@img/sharp-linuxmusl-x64": "0.33.3",
|
||||
"@img/sharp-wasm32": "0.33.3",
|
||||
"@img/sharp-win32-ia32": "0.33.3",
|
||||
"@img/sharp-win32-x64": "0.33.3"
|
||||
"@img/sharp-linux-arm": "0.33.4",
|
||||
"@img/sharp-linux-arm64": "0.33.4",
|
||||
"@img/sharp-linux-s390x": "0.33.4",
|
||||
"@img/sharp-linux-x64": "0.33.4",
|
||||
"@img/sharp-linuxmusl-arm64": "0.33.4",
|
||||
"@img/sharp-linuxmusl-x64": "0.33.4",
|
||||
"@img/sharp-wasm32": "0.33.4",
|
||||
"@img/sharp-win32-ia32": "0.33.4",
|
||||
"@img/sharp-win32-x64": "0.33.4"
|
||||
}
|
||||
},
|
||||
"node_modules/shebang-command": {
|
||||
@@ -3354,7 +3374,8 @@
|
||||
"type": "consulting",
|
||||
"url": "https://feross.org/support"
|
||||
}
|
||||
]
|
||||
],
|
||||
"optional": true
|
||||
},
|
||||
"node_modules/simple-get": {
|
||||
"version": "4.0.1",
|
||||
@@ -3374,6 +3395,7 @@
|
||||
"url": "https://feross.org/support"
|
||||
}
|
||||
],
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"decompress-response": "^6.0.0",
|
||||
"once": "^1.3.1",
|
||||
@@ -3532,14 +3554,15 @@
|
||||
"version": "2.0.1",
|
||||
"resolved": "https://registry.npmjs.org/strip-json-comments/-/strip-json-comments-2.0.1.tgz",
|
||||
"integrity": "sha512-4gB8na07fecVVkOI6Rs4e7T6NOTki5EmL7TUduTs6bu3EdnSycntVJ4re8kgZA+wx9IueI2Y11bfbgwtzuE0KQ==",
|
||||
"optional": true,
|
||||
"engines": {
|
||||
"node": ">=0.10.0"
|
||||
}
|
||||
},
|
||||
"node_modules/tar": {
|
||||
"version": "7.1.0",
|
||||
"resolved": "https://registry.npmjs.org/tar/-/tar-7.1.0.tgz",
|
||||
"integrity": "sha512-ENhg4W6BmjYxl8GTaE7/h99f0aXiSWv4kikRZ9n2/JRxypZniE84ILZqimAhxxX7Zb8Px6pFdheW3EeHfhnXQQ==",
|
||||
"version": "7.2.0",
|
||||
"resolved": "https://registry.npmjs.org/tar/-/tar-7.2.0.tgz",
|
||||
"integrity": "sha512-hctwP0Nb4AB60bj8WQgRYaMOuJYRAPMGiQUAotms5igN8ppfQM+IvjQ5HcKu1MaZh2Wy2KWVTe563Yj8dfc14w==",
|
||||
"dependencies": {
|
||||
"@isaacs/fs-minipass": "^4.0.0",
|
||||
"chownr": "^3.0.0",
|
||||
@@ -3556,6 +3579,7 @@
|
||||
"version": "2.1.1",
|
||||
"resolved": "https://registry.npmjs.org/tar-fs/-/tar-fs-2.1.1.tgz",
|
||||
"integrity": "sha512-V0r2Y9scmbDRLCNex/+hYzvp/zyYjvFbHPNgVTKfQvVrb6guiE/fxP+XblDNR011utopbkex2nM4dHNV6GDsng==",
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"chownr": "^1.1.1",
|
||||
"mkdirp-classic": "^0.5.2",
|
||||
@@ -3566,12 +3590,14 @@
|
||||
"node_modules/tar-fs/node_modules/chownr": {
|
||||
"version": "1.1.4",
|
||||
"resolved": "https://registry.npmjs.org/chownr/-/chownr-1.1.4.tgz",
|
||||
"integrity": "sha512-jJ0bqzaylmJtVnNgzTeSOs8DPavpbYgEr/b0YL8/2GO3xJEhInFmhKMUnEJQjZumK7KXGFhUy89PrsJWlakBVg=="
|
||||
"integrity": "sha512-jJ0bqzaylmJtVnNgzTeSOs8DPavpbYgEr/b0YL8/2GO3xJEhInFmhKMUnEJQjZumK7KXGFhUy89PrsJWlakBVg==",
|
||||
"optional": true
|
||||
},
|
||||
"node_modules/tar-stream": {
|
||||
"version": "2.2.0",
|
||||
"resolved": "https://registry.npmjs.org/tar-stream/-/tar-stream-2.2.0.tgz",
|
||||
"integrity": "sha512-ujeqbceABgwMZxEJnk2HDY2DlnUZ+9oEcb1KzTVfYHio0UE6dG71n60d8D2I4qNvleWrrXpmjpt7vZeF1LnMZQ==",
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"bl": "^4.0.3",
|
||||
"end-of-stream": "^1.4.1",
|
||||
@@ -3685,6 +3711,7 @@
|
||||
"version": "0.6.0",
|
||||
"resolved": "https://registry.npmjs.org/tunnel-agent/-/tunnel-agent-0.6.0.tgz",
|
||||
"integrity": "sha512-McnNiV1l8RYeY8tBgEpuodCC1mLUdbSN+CYBL7kJsJNInOP8UjDDEwdk6Mw60vdLLrr5NHKZhMAOSrR2NZuQ+w==",
|
||||
"optional": true,
|
||||
"dependencies": {
|
||||
"safe-buffer": "^5.0.1"
|
||||
},
|
||||
|
||||
@@ -1,12 +1,11 @@
|
||||
{
|
||||
"name": "@scrypted/server",
|
||||
"version": "0.103.4",
|
||||
"version": "0.109.0",
|
||||
"description": "",
|
||||
"dependencies": {
|
||||
"@mapbox/node-pre-gyp": "^1.0.11",
|
||||
"@scrypted/ffmpeg-static": "^6.1.0-build1",
|
||||
"@scrypted/node-pty": "^1.0.10",
|
||||
"@scrypted/types": "^0.3.28",
|
||||
"@scrypted/types": "^0.3.30",
|
||||
"adm-zip": "^0.5.12",
|
||||
"body-parser": "^1.20.2",
|
||||
"cookie-parser": "^1.4.6",
|
||||
@@ -22,12 +21,12 @@
|
||||
"node-dijkstra": "^2.5.0",
|
||||
"node-forge": "^1.3.1",
|
||||
"node-gyp": "^10.1.0",
|
||||
"py": "npm:@bjia56/portable-python@^0.1.31",
|
||||
"py": "npm:@bjia56/portable-python@^0.1.47",
|
||||
"router": "^1.3.8",
|
||||
"semver": "^7.6.2",
|
||||
"sharp": "^0.33.3",
|
||||
"sharp": "^0.33.4",
|
||||
"source-map-support": "^0.5.21",
|
||||
"tar": "^7.1.0",
|
||||
"tar": "^7.2.0",
|
||||
"tslib": "^2.6.2",
|
||||
"typescript": "^5.4.5",
|
||||
"whatwg-mimetype": "^4.0.0",
|
||||
@@ -40,7 +39,7 @@
|
||||
"@types/follow-redirects": "^1.14.4",
|
||||
"@types/http-auth": "^4.1.4",
|
||||
"@types/ip": "^1.1.3",
|
||||
"@types/lodash": "^4.17.1",
|
||||
"@types/lodash": "^4.17.4",
|
||||
"@types/node-dijkstra": "^2.5.6",
|
||||
"@types/node-forge": "^1.3.11",
|
||||
"@types/semver": "^7.5.8",
|
||||
@@ -48,6 +47,9 @@
|
||||
"@types/whatwg-mimetype": "^3.0.2",
|
||||
"@types/ws": "^8.5.10"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@scrypted/node-pty": "^1.0.11"
|
||||
},
|
||||
"bin": {
|
||||
"scrypted-serve": "bin/scrypted-serve"
|
||||
},
|
||||
|
||||
@@ -557,6 +557,7 @@ class PluginRemote:
|
||||
python_version = 'python%s' % str(
|
||||
sys.version_info[0])+"."+str(sys.version_info[1])
|
||||
print('python version:', python_version)
|
||||
print('interpreter:', sys.executable)
|
||||
|
||||
python_versioned_directory = '%s-%s-%s' % (
|
||||
python_version, platform.system(), platform.machine())
|
||||
|
||||
@@ -13,7 +13,7 @@ export async function listenZero(server: net.Server, hostname?: string) {
|
||||
return (server.address() as net.AddressInfo).port;
|
||||
}
|
||||
|
||||
export async function listenZeroSingleClient(hostname?: string, options?: net.ServerOpts) {
|
||||
export async function listenZeroSingleClient(hostname?: string, options?: net.ServerOpts, listenTimeout = 30000) {
|
||||
const server = new net.Server(options);
|
||||
const port = await listenZero(server, hostname);
|
||||
|
||||
@@ -22,7 +22,7 @@ export async function listenZeroSingleClient(hostname?: string, options?: net.Se
|
||||
const timeout = setTimeout(() => {
|
||||
server.close();
|
||||
reject(new ListenZeroSingleClientTimeoutError());
|
||||
}, 30000);
|
||||
}, listenTimeout);
|
||||
cancel = () => {
|
||||
clearTimeout(timeout);
|
||||
server.close();
|
||||
|
||||
@@ -12,7 +12,6 @@ import net from 'net';
|
||||
import path from 'path';
|
||||
import { ParsedQs } from 'qs';
|
||||
import semver from 'semver';
|
||||
import { PassThrough } from 'stream';
|
||||
import { Parser as TarParser } from 'tar';
|
||||
import { URL } from "url";
|
||||
import WebSocket, { Server as WebSocketServer } from "ws";
|
||||
@@ -33,6 +32,7 @@ import { PluginHost } from './plugin/plugin-host';
|
||||
import { isConnectionUpgrade, PluginHttp } from './plugin/plugin-http';
|
||||
import { WebSocketConnection } from './plugin/plugin-remote-websocket';
|
||||
import { getPluginVolume } from './plugin/plugin-volume';
|
||||
import { CustomRuntimeWorker } from './plugin/runtime/custom-worker';
|
||||
import { NodeForkWorker } from './plugin/runtime/node-fork-worker';
|
||||
import { PythonRuntimeWorker } from './plugin/runtime/python-worker';
|
||||
import { RuntimeWorker, RuntimeWorkerOptions } from './plugin/runtime/runtime-worker';
|
||||
@@ -46,7 +46,6 @@ import { getNpmPackageInfo, PluginComponent } from './services/plugin';
|
||||
import { ServiceControl } from './services/service-control';
|
||||
import { UsersService } from './services/users';
|
||||
import { getState, ScryptedStateManager, setState } from './state';
|
||||
import { CustomRuntimeWorker } from './plugin/runtime/custom-worker';
|
||||
|
||||
interface DeviceProxyPair {
|
||||
handler: PluginDeviceProxyHandler;
|
||||
@@ -652,7 +651,7 @@ export class ScryptedRuntime extends PluginHttp<HttpPluginData> {
|
||||
}
|
||||
|
||||
const existing = this.plugins[pluginHost.pluginId];
|
||||
if (existing !== pluginHost) {
|
||||
if (existing && existing !== pluginHost && !existing.killed) {
|
||||
logger.log('w', `scheduled plugin restart cancelled, plugin was restarted by user ${pluginHost.pluginId}`);
|
||||
return;
|
||||
}
|
||||
@@ -675,18 +674,26 @@ export class ScryptedRuntime extends PluginHttp<HttpPluginData> {
|
||||
|
||||
loadPlugin(plugin: Plugin, pluginDebug?: PluginDebug) {
|
||||
const pluginId = plugin._id;
|
||||
this.killPlugin(pluginId);
|
||||
try {
|
||||
this.killPlugin(pluginId);
|
||||
|
||||
const pluginDevices = this.findPluginDevices(pluginId);
|
||||
for (const pluginDevice of pluginDevices) {
|
||||
this.invalidatePluginDevice(pluginDevice._id);
|
||||
const pluginDevices = this.findPluginDevices(pluginId);
|
||||
for (const pluginDevice of pluginDevices) {
|
||||
this.invalidatePluginDevice(pluginDevice._id);
|
||||
}
|
||||
|
||||
const pluginHost = new PluginHost(this, plugin, pluginDebug);
|
||||
this.setupPluginHostAutoRestart(pluginHost);
|
||||
this.plugins[pluginId] = pluginHost;
|
||||
|
||||
return pluginHost;
|
||||
}
|
||||
catch (e) {
|
||||
const logger = this.getDeviceLogger(this.findPluginDevice(pluginId));
|
||||
logger.log('e', 'error loading plugin');
|
||||
logger.log('e', e.toString());
|
||||
throw e;
|
||||
}
|
||||
|
||||
const pluginHost = new PluginHost(this, plugin, pluginDebug);
|
||||
this.setupPluginHostAutoRestart(pluginHost);
|
||||
this.plugins[pluginId] = pluginHost;
|
||||
|
||||
return pluginHost;
|
||||
}
|
||||
|
||||
probePluginDevices(plugin: Plugin) {
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import dns from 'dns';
|
||||
import dotenv from 'dotenv';
|
||||
import fs from 'fs';
|
||||
import path from 'path';
|
||||
import process from 'process';
|
||||
import semver from 'semver';
|
||||
@@ -17,6 +18,13 @@ export function isChildProcess() {
|
||||
function start(mainFilename: string, options?: {
|
||||
onRuntimeCreated?: (runtime: Runtime) => Promise<void>,
|
||||
}) {
|
||||
// Allow including a custom file path for platforms that require
|
||||
// compatibility hacks. For example, Android may need to patch
|
||||
// os functions.
|
||||
if (process.env.SCRYPTED_COMPATIBILITY_FILE && fs.existsSync(process.env.SCRYPTED_COMPATIBILITY_FILE)) {
|
||||
require(process.env.SCRYPTED_COMPATIBILITY_FILE);
|
||||
}
|
||||
|
||||
if (!global.gc) {
|
||||
v8.setFlagsFromString('--expose_gc')
|
||||
global.gc = vm.runInNewContext("gc");
|
||||
|
||||
Reference in New Issue
Block a user