Compare commits

..

2 Commits

Author SHA1 Message Date
Srikanth Chekuri
25e0c19ddb Merge branch 'main' into remove-v4-support-rules 2026-02-14 23:51:21 +05:30
srikanthccv
8a6abb2f09 chore: remove support for older versions in rules 2026-02-14 23:48:09 +05:30
45 changed files with 2198 additions and 2533 deletions

View File

@@ -176,6 +176,25 @@ Wir haben Benchmarks veröffentlicht, die Loki mit SigNoz vergleichen. Schauen S
Wir ❤️ Beiträge zum Projekt, egal ob große oder kleine. Bitte lies dir zuerst die [CONTRIBUTING.md](CONTRIBUTING.md), durch, bevor du anfängst, Beiträge zu SigNoz zu machen.
Du bist dir nicht sicher, wie du anfangen sollst? Schreib uns einfach auf dem #contributing Kanal in unserer [slack community](https://signoz.io/slack)
### Unsere Projektbetreuer
#### Backend
- [Ankit Nayan](https://github.com/ankitnayan)
- [Nityananda Gohain](https://github.com/nityanandagohain)
- [Srikanth Chekuri](https://github.com/srikanthccv)
- [Vishal Sharma](https://github.com/makeavish)
#### Frontend
- [Palash Gupta](https://github.com/palashgdev)
- [Yunus M](https://github.com/YounixM)
- [Rajat Dabade](https://github.com/Rajat-Dabade)
#### DevOps
- [Prashant Shahi](https://github.com/prashant-shahi)
<br /><br />
## Dokumentation

View File

@@ -221,6 +221,34 @@ We ❤️ contributions big or small. Please read [CONTRIBUTING.md](CONTRIBUTING
Not sure how to get started? Just ping us on `#contributing` in our [slack community](https://signoz.io/slack)
### Project maintainers
#### Backend
- [Ankit Nayan](https://github.com/ankitnayan)
- [Nityananda Gohain](https://github.com/nityanandagohain)
- [Srikanth Chekuri](https://github.com/srikanthccv)
- [Vishal Sharma](https://github.com/makeavish)
- [Shivanshu Raj Shrivastava](https://github.com/shivanshuraj1333)
- [Ekansh Gupta](https://github.com/eKuG)
- [Aniket Agarwal](https://github.com/aniketio-ctrl)
#### Frontend
- [Yunus M](https://github.com/YounixM)
- [Vikrant Gupta](https://github.com/vikrantgupta25)
- [Sagar Rajput](https://github.com/SagarRajput-7)
- [Shaheer Kochai](https://github.com/ahmadshaheer)
- [Amlan Kumar Nandy](https://github.com/amlannandy)
- [Sahil Khan](https://github.com/sawhil)
- [Aditya Singh](https://github.com/aks07)
- [Abhi Kumar](https://github.com/ahrefabhi)
#### DevOps
- [Prashant Shahi](https://github.com/prashant-shahi)
- [Vibhu Pandey](https://github.com/therealpandey)
<br /><br />

View File

@@ -187,6 +187,25 @@ Jaeger 仅仅是一个分布式追踪系统。 但是 SigNoz 可以提供 metric
如果你不知道如何开始? 只需要在 [slack 社区](https://signoz.io/slack) 通过 `#contributing` 频道联系我们。
### 项目维护人员
#### 后端
- [Ankit Nayan](https://github.com/ankitnayan)
- [Nityananda Gohain](https://github.com/nityanandagohain)
- [Srikanth Chekuri](https://github.com/srikanthccv)
- [Vishal Sharma](https://github.com/makeavish)
#### 前端
- [Palash Gupta](https://github.com/palashgdev)
- [Yunus M](https://github.com/YounixM)
- [Rajat Dabade](https://github.com/Rajat-Dabade)
#### 运维开发
- [Prashant Shahi](https://github.com/prashant-shahi)
<br /><br />
## 文档

View File

@@ -285,6 +285,7 @@ flagger:
config:
boolean:
use_span_metrics: true
interpolation_enabled: false
kafka_span_eval: false
string:
float:

View File

@@ -5,23 +5,16 @@ import (
"encoding/json"
"fmt"
"log/slog"
"math"
"strings"
"sync"
"time"
"github.com/SigNoz/signoz/ee/query-service/anomaly"
"github.com/SigNoz/signoz/pkg/cache"
"github.com/SigNoz/signoz/pkg/query-service/common"
"github.com/SigNoz/signoz/pkg/query-service/model"
"github.com/SigNoz/signoz/pkg/transition"
"github.com/SigNoz/signoz/pkg/types/ruletypes"
"github.com/SigNoz/signoz/pkg/valuer"
querierV2 "github.com/SigNoz/signoz/pkg/query-service/app/querier/v2"
"github.com/SigNoz/signoz/pkg/query-service/app/queryBuilder"
"github.com/SigNoz/signoz/pkg/query-service/interfaces"
v3 "github.com/SigNoz/signoz/pkg/query-service/model/v3"
"github.com/SigNoz/signoz/pkg/query-service/utils/labels"
"github.com/SigNoz/signoz/pkg/query-service/utils/times"
"github.com/SigNoz/signoz/pkg/query-service/utils/timestamp"
@@ -32,6 +25,8 @@ import (
querierV5 "github.com/SigNoz/signoz/pkg/querier"
"github.com/SigNoz/signoz/ee/query-service/anomaly"
anomalyV2 "github.com/SigNoz/signoz/ee/anomaly"
qbtypes "github.com/SigNoz/signoz/pkg/types/querybuildertypes/querybuildertypesv5"
@@ -48,17 +43,12 @@ type AnomalyRule struct {
reader interfaces.Reader
// querierV2 is used for alerts created after the introduction of new metrics query builder
querierV2 interfaces.Querier
// querierV5 is used for alerts migrated after the introduction of new query builder
// querierV5 is the query builder v5 querier used for all alert rule evaluation
querierV5 querierV5.Querier
provider anomaly.Provider
providerV2 anomalyV2.Provider
version string
logger *slog.Logger
logger *slog.Logger
seasonality anomaly.Seasonality
}
@@ -102,34 +92,6 @@ func NewAnomalyRule(
logger.Info("using seasonality", "seasonality", t.seasonality.String())
querierOptsV2 := querierV2.QuerierOptions{
Reader: reader,
Cache: cache,
KeyGenerator: queryBuilder.NewKeyGenerator(),
}
t.querierV2 = querierV2.NewQuerier(querierOptsV2)
t.reader = reader
if t.seasonality == anomaly.SeasonalityHourly {
t.provider = anomaly.NewHourlyProvider(
anomaly.WithCache[*anomaly.HourlyProvider](cache),
anomaly.WithKeyGenerator[*anomaly.HourlyProvider](queryBuilder.NewKeyGenerator()),
anomaly.WithReader[*anomaly.HourlyProvider](reader),
)
} else if t.seasonality == anomaly.SeasonalityDaily {
t.provider = anomaly.NewDailyProvider(
anomaly.WithCache[*anomaly.DailyProvider](cache),
anomaly.WithKeyGenerator[*anomaly.DailyProvider](queryBuilder.NewKeyGenerator()),
anomaly.WithReader[*anomaly.DailyProvider](reader),
)
} else if t.seasonality == anomaly.SeasonalityWeekly {
t.provider = anomaly.NewWeeklyProvider(
anomaly.WithCache[*anomaly.WeeklyProvider](cache),
anomaly.WithKeyGenerator[*anomaly.WeeklyProvider](queryBuilder.NewKeyGenerator()),
anomaly.WithReader[*anomaly.WeeklyProvider](reader),
)
}
if t.seasonality == anomaly.SeasonalityHourly {
t.providerV2 = anomalyV2.NewHourlyProvider(
anomalyV2.WithQuerier[*anomalyV2.HourlyProvider](querierV5),
@@ -148,7 +110,7 @@ func NewAnomalyRule(
}
t.querierV5 = querierV5
t.version = p.Version
t.reader = reader
t.logger = logger
return &t, nil
}
@@ -157,36 +119,9 @@ func (r *AnomalyRule) Type() ruletypes.RuleType {
return RuleTypeAnomaly
}
func (r *AnomalyRule) prepareQueryRange(ctx context.Context, ts time.Time) (*v3.QueryRangeParamsV3, error) {
func (r *AnomalyRule) prepareQueryRange(ctx context.Context, ts time.Time) (*qbtypes.QueryRangeRequest, error) {
r.logger.InfoContext(
ctx, "prepare query range request v4", "ts", ts.UnixMilli(), "eval_window", r.EvalWindow().Milliseconds(), "eval_delay", r.EvalDelay().Milliseconds(),
)
st, en := r.Timestamps(ts)
start := st.UnixMilli()
end := en.UnixMilli()
compositeQuery := r.Condition().CompositeQuery
if compositeQuery.PanelType != v3.PanelTypeGraph {
compositeQuery.PanelType = v3.PanelTypeGraph
}
// default mode
return &v3.QueryRangeParamsV3{
Start: start,
End: end,
Step: int64(math.Max(float64(common.MinAllowedStepInterval(start, end)), 60)),
CompositeQuery: compositeQuery,
Variables: make(map[string]interface{}, 0),
NoCache: false,
}, nil
}
func (r *AnomalyRule) prepareQueryRangeV5(ctx context.Context, ts time.Time) (*qbtypes.QueryRangeRequest, error) {
r.logger.InfoContext(ctx, "prepare query range request v5", "ts", ts.UnixMilli(), "eval_window", r.EvalWindow().Milliseconds(), "eval_delay", r.EvalDelay().Milliseconds())
r.logger.InfoContext(ctx, "prepare query range request", "ts", ts.UnixMilli(), "eval_window", r.EvalWindow().Milliseconds(), "eval_delay", r.EvalDelay().Milliseconds())
startTs, endTs := r.Timestamps(ts)
start, end := startTs.UnixMilli(), endTs.UnixMilli()
@@ -215,60 +150,6 @@ func (r *AnomalyRule) buildAndRunQuery(ctx context.Context, orgID valuer.UUID, t
if err != nil {
return nil, err
}
err = r.PopulateTemporality(ctx, orgID, params)
if err != nil {
return nil, fmt.Errorf("internal error while setting temporality")
}
anomalies, err := r.provider.GetAnomalies(ctx, orgID, &anomaly.GetAnomaliesRequest{
Params: params,
Seasonality: r.seasonality,
})
if err != nil {
return nil, err
}
var queryResult *v3.Result
for _, result := range anomalies.Results {
if result.QueryName == r.GetSelectedQuery() {
queryResult = result
break
}
}
hasData := len(queryResult.AnomalyScores) > 0
if missingDataAlert := r.HandleMissingDataAlert(ctx, ts, hasData); missingDataAlert != nil {
return ruletypes.Vector{*missingDataAlert}, nil
}
var resultVector ruletypes.Vector
scoresJSON, _ := json.Marshal(queryResult.AnomalyScores)
r.logger.InfoContext(ctx, "anomaly scores", "scores", string(scoresJSON))
for _, series := range queryResult.AnomalyScores {
if !r.Condition().ShouldEval(series) {
r.logger.InfoContext(ctx, "not enough data points to evaluate series, skipping", "ruleid", r.ID(), "numPoints", len(series.Points), "requiredPoints", r.Condition().RequiredNumPoints)
continue
}
results, err := r.Threshold.Eval(*series, r.Unit(), ruletypes.EvalData{
ActiveAlerts: r.ActiveAlertsLabelFP(),
SendUnmatched: r.ShouldSendUnmatched(),
})
if err != nil {
return nil, err
}
resultVector = append(resultVector, results...)
}
return resultVector, nil
}
func (r *AnomalyRule) buildAndRunQueryV5(ctx context.Context, orgID valuer.UUID, ts time.Time) (ruletypes.Vector, error) {
params, err := r.prepareQueryRangeV5(ctx, ts)
if err != nil {
return nil, err
}
anomalies, err := r.providerV2.GetAnomalies(ctx, orgID, &anomalyV2.AnomaliesRequest{
Params: *params,
@@ -290,20 +171,25 @@ func (r *AnomalyRule) buildAndRunQueryV5(ctx context.Context, orgID valuer.UUID,
r.logger.WarnContext(ctx, "nil qb result", "ts", ts.UnixMilli())
}
queryResult := transition.ConvertV5TimeSeriesDataToV4Result(qbResult)
var anomalyScores []*qbtypes.TimeSeries
if qbResult != nil {
for _, bucket := range qbResult.Aggregations {
anomalyScores = append(anomalyScores, bucket.AnomalyScores...)
}
}
hasData := len(queryResult.AnomalyScores) > 0
hasData := len(anomalyScores) > 0
if missingDataAlert := r.HandleMissingDataAlert(ctx, ts, hasData); missingDataAlert != nil {
return ruletypes.Vector{*missingDataAlert}, nil
}
var resultVector ruletypes.Vector
scoresJSON, _ := json.Marshal(queryResult.AnomalyScores)
scoresJSON, _ := json.Marshal(anomalyScores)
r.logger.InfoContext(ctx, "anomaly scores", "scores", string(scoresJSON))
// Filter out new series if newGroupEvalDelay is configured
seriesToProcess := queryResult.AnomalyScores
seriesToProcess := anomalyScores
if r.ShouldSkipNewGroups() {
filteredSeries, filterErr := r.BaseRule.FilterNewSeries(ctx, ts, seriesToProcess)
// In case of error we log the error and continue with the original series
@@ -316,7 +202,7 @@ func (r *AnomalyRule) buildAndRunQueryV5(ctx context.Context, orgID valuer.UUID,
for _, series := range seriesToProcess {
if !r.Condition().ShouldEval(series) {
r.logger.InfoContext(ctx, "not enough data points to evaluate series, skipping", "ruleid", r.ID(), "numPoints", len(series.Points), "requiredPoints", r.Condition().RequiredNumPoints)
r.logger.InfoContext(ctx, "not enough data points to evaluate series, skipping", "ruleid", r.ID(), "numPoints", len(series.Values), "requiredPoints", r.Condition().RequiredNumPoints)
continue
}
results, err := r.Threshold.Eval(*series, r.Unit(), ruletypes.EvalData{
@@ -337,16 +223,7 @@ func (r *AnomalyRule) Eval(ctx context.Context, ts time.Time) (int, error) {
valueFormatter := formatter.FromUnit(r.Unit())
var res ruletypes.Vector
var err error
if r.version == "v5" {
r.logger.InfoContext(ctx, "running v5 query")
res, err = r.buildAndRunQueryV5(ctx, r.OrgID(), ts)
} else {
r.logger.InfoContext(ctx, "running v4 query")
res, err = r.buildAndRunQuery(ctx, r.OrgID(), ts)
}
res, err := r.buildAndRunQuery(ctx, r.OrgID(), ts)
if err != nil {
return 0, err
}

View File

@@ -8,28 +8,27 @@ import (
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/SigNoz/signoz/ee/query-service/anomaly"
anomalyV2 "github.com/SigNoz/signoz/ee/anomaly"
"github.com/SigNoz/signoz/pkg/instrumentation/instrumentationtest"
"github.com/SigNoz/signoz/pkg/query-service/app/clickhouseReader"
v3 "github.com/SigNoz/signoz/pkg/query-service/model/v3"
"github.com/SigNoz/signoz/pkg/telemetrystore"
"github.com/SigNoz/signoz/pkg/telemetrystore/telemetrystoretest"
qbtypes "github.com/SigNoz/signoz/pkg/types/querybuildertypes/querybuildertypesv5"
"github.com/SigNoz/signoz/pkg/types/ruletypes"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
v3 "github.com/SigNoz/signoz/pkg/query-service/model/v3"
"github.com/SigNoz/signoz/pkg/valuer"
)
// mockAnomalyProvider is a mock implementation of anomaly.Provider for testing.
// We need this because the anomaly provider makes 6 different queries for various
// time periods (current, past period, current season, past season, past 2 seasons,
// past 3 seasons), making it cumbersome to create mock data.
type mockAnomalyProvider struct {
responses []*anomaly.GetAnomaliesResponse
// mockAnomalyProviderV2 is a mock implementation of anomalyV2.Provider for testing.
type mockAnomalyProviderV2 struct {
responses []*anomalyV2.AnomaliesResponse
callCount int
}
func (m *mockAnomalyProvider) GetAnomalies(ctx context.Context, orgID valuer.UUID, req *anomaly.GetAnomaliesRequest) (*anomaly.GetAnomaliesResponse, error) {
func (m *mockAnomalyProviderV2) GetAnomalies(ctx context.Context, orgID valuer.UUID, req *anomalyV2.AnomaliesRequest) (*anomalyV2.AnomaliesResponse, error) {
if m.callCount >= len(m.responses) {
return &anomaly.GetAnomaliesResponse{Results: []*v3.Result{}}, nil
return &anomalyV2.AnomaliesResponse{Results: []*qbtypes.TimeSeriesData{}}, nil
}
resp := m.responses[m.callCount]
m.callCount++
@@ -82,11 +81,11 @@ func TestAnomalyRule_NoData_AlertOnAbsent(t *testing.T) {
},
}
responseNoData := &anomaly.GetAnomaliesResponse{
Results: []*v3.Result{
responseNoData := &anomalyV2.AnomaliesResponse{
Results: []*qbtypes.TimeSeriesData{
{
QueryName: "A",
AnomalyScores: []*v3.Series{},
QueryName: "A",
Aggregations: []*qbtypes.AggregationBucket{},
},
},
}
@@ -129,8 +128,8 @@ func TestAnomalyRule_NoData_AlertOnAbsent(t *testing.T) {
)
require.NoError(t, err)
rule.provider = &mockAnomalyProvider{
responses: []*anomaly.GetAnomaliesResponse{responseNoData},
rule.providerV2 = &mockAnomalyProviderV2{
responses: []*anomalyV2.AnomaliesResponse{responseNoData},
}
alertsFound, err := rule.Eval(context.Background(), evalTime)
@@ -190,11 +189,11 @@ func TestAnomalyRule_NoData_AbsentFor(t *testing.T) {
},
}
responseNoData := &anomaly.GetAnomaliesResponse{
Results: []*v3.Result{
responseNoData := &anomalyV2.AnomaliesResponse{
Results: []*qbtypes.TimeSeriesData{
{
QueryName: "A",
AnomalyScores: []*v3.Series{},
QueryName: "A",
Aggregations: []*qbtypes.AggregationBucket{},
},
},
}
@@ -228,16 +227,22 @@ func TestAnomalyRule_NoData_AbsentFor(t *testing.T) {
t1 := baseTime.Add(5 * time.Minute)
t2 := t1.Add(c.timeBetweenEvals)
responseWithData := &anomaly.GetAnomaliesResponse{
Results: []*v3.Result{
responseWithData := &anomalyV2.AnomaliesResponse{
Results: []*qbtypes.TimeSeriesData{
{
QueryName: "A",
AnomalyScores: []*v3.Series{
Aggregations: []*qbtypes.AggregationBucket{
{
Labels: map[string]string{"test": "label"},
Points: []v3.Point{
{Timestamp: baseTime.UnixMilli(), Value: 1.0},
{Timestamp: baseTime.Add(time.Minute).UnixMilli(), Value: 1.5},
AnomalyScores: []*qbtypes.TimeSeries{
{
Labels: []*qbtypes.Label{
{Key: telemetrytypes.TelemetryFieldKey{Name: "test"}, Value: "label"},
},
Values: []*qbtypes.TimeSeriesValue{
{Timestamp: baseTime.UnixMilli(), Value: 1.0},
{Timestamp: baseTime.Add(time.Minute).UnixMilli(), Value: 1.5},
},
},
},
},
},
@@ -252,8 +257,8 @@ func TestAnomalyRule_NoData_AbsentFor(t *testing.T) {
rule, err := NewAnomalyRule("test-anomaly-rule", valuer.GenerateUUID(), &postableRule, reader, nil, logger, nil)
require.NoError(t, err)
rule.provider = &mockAnomalyProvider{
responses: []*anomaly.GetAnomaliesResponse{responseWithData, responseNoData},
rule.providerV2 = &mockAnomalyProviderV2{
responses: []*anomalyV2.AnomaliesResponse{responseWithData, responseNoData},
}
alertsFound1, err := rule.Eval(context.Background(), t1)

View File

@@ -6,7 +6,7 @@ import logEvent from 'api/common/logEvent';
import PromQLIcon from 'assets/Dashboard/PromQl';
import { QueryBuilderV2 } from 'components/QueryBuilderV2/QueryBuilderV2';
import { ALERTS_DATA_SOURCE_MAP } from 'constants/alerts';
import { ENTITY_VERSION_V4 } from 'constants/app';
import { ENTITY_VERSION_V5 } from 'constants/app';
import { PANEL_TYPES } from 'constants/queryBuilder';
import { QBShortcuts } from 'constants/shortcuts/QBShortcuts';
import RunQueryBtn from 'container/QueryBuilder/components/RunQueryBtn/RunQueryBtn';
@@ -63,12 +63,8 @@ function QuerySection({
signalSource: signalSource === 'meter' ? 'meter' : '',
}}
showTraceOperator={alertType === AlertTypes.TRACES_BASED_ALERT}
showFunctions={
(alertType === AlertTypes.METRICS_BASED_ALERT &&
alertDef.version === ENTITY_VERSION_V4) ||
alertType === AlertTypes.LOGS_BASED_ALERT
}
version={alertDef.version || 'v3'}
showFunctions
version={ENTITY_VERSION_V5}
onSignalSourceChange={handleSignalSourceChange}
signalSourceChangeEnabled
/>

View File

@@ -3,8 +3,9 @@ package flagger
import "github.com/SigNoz/signoz/pkg/types/featuretypes"
var (
FeatureUseSpanMetrics = featuretypes.MustNewName("use_span_metrics")
FeatureKafkaSpanEval = featuretypes.MustNewName("kafka_span_eval")
FeatureUseSpanMetrics = featuretypes.MustNewName("use_span_metrics")
FeatureInterpolationEnabled = featuretypes.MustNewName("interpolation_enabled")
FeatureKafkaSpanEval = featuretypes.MustNewName("kafka_span_eval")
)
func MustNewRegistry() featuretypes.Registry {
@@ -17,6 +18,14 @@ func MustNewRegistry() featuretypes.Registry {
DefaultVariant: featuretypes.MustNewName("disabled"),
Variants: featuretypes.NewBooleanVariants(),
},
&featuretypes.Feature{
Name: FeatureInterpolationEnabled,
Kind: featuretypes.KindBoolean,
Stage: featuretypes.StageExperimental,
Description: "Controls whether to enable interpolation",
DefaultVariant: featuretypes.MustNewName("disabled"),
Variants: featuretypes.NewBooleanVariants(),
},
&featuretypes.Feature{
Name: FeatureKafkaSpanEval,
Kind: featuretypes.KindBoolean,

View File

@@ -625,7 +625,7 @@ func (r *BaseRule) extractMetricAndGroupBys(ctx context.Context) (map[string][]s
// FilterNewSeries filters out items that are too new based on metadata first_seen timestamps.
// Returns the filtered series (old ones) excluding new series that are still within the grace period.
func (r *BaseRule) FilterNewSeries(ctx context.Context, ts time.Time, series []*v3.Series) ([]*v3.Series, error) {
func (r *BaseRule) FilterNewSeries(ctx context.Context, ts time.Time, series []*qbtypes.TimeSeries) ([]*qbtypes.TimeSeries, error) {
// Extract metric names and groupBy keys
metricToGroupedFields, err := r.extractMetricAndGroupBys(ctx)
if err != nil {
@@ -642,7 +642,7 @@ func (r *BaseRule) FilterNewSeries(ctx context.Context, ts time.Time, series []*
seriesIdxToLookupKeys := make(map[int][]telemetrytypes.MetricMetadataLookupKey) // series index -> lookup keys
for i := 0; i < len(series); i++ {
metricLabelMap := series[i].Labels
metricLabelMap := series[i].LabelsMap()
// Collect groupBy attribute-value pairs for this series
seriesKeys := make([]telemetrytypes.MetricMetadataLookupKey, 0)
@@ -689,7 +689,7 @@ func (r *BaseRule) FilterNewSeries(ctx context.Context, ts time.Time, series []*
}
// Filter series based on first_seen + delay
filteredSeries := make([]*v3.Series, 0, len(series))
filteredSeries := make([]*qbtypes.TimeSeries, 0, len(series))
evalTimeMs := ts.UnixMilli()
newGroupEvalDelayMs := r.newGroupEvalDelay.Milliseconds()
@@ -727,7 +727,7 @@ func (r *BaseRule) FilterNewSeries(ctx context.Context, ts time.Time, series []*
// Check if first_seen + delay has passed
if maxFirstSeen+newGroupEvalDelayMs > evalTimeMs {
// Still within grace period, skip this series
r.logger.InfoContext(ctx, "Skipping new series", "rule_name", r.Name(), "series_idx", i, "max_first_seen", maxFirstSeen, "eval_time_ms", evalTimeMs, "delay_ms", newGroupEvalDelayMs, "labels", series[i].Labels)
r.logger.InfoContext(ctx, "Skipping new series", "rule_name", r.Name(), "series_idx", i, "max_first_seen", maxFirstSeen, "eval_time_ms", evalTimeMs, "delay_ms", newGroupEvalDelayMs, "labels", series[i].LabelsMap())
continue
}

View File

@@ -26,33 +26,33 @@ import (
"github.com/SigNoz/signoz/pkg/valuer"
)
// createTestSeries creates a *v3.Series with the given labels and optional points
// createTestSeries creates a *qbtypes.TimeSeries with the given labels and optional values
// so we don't exactly need the points in the series because the labels are used to determine if the series is new or old
// we use the labels to create a lookup key for the series and then check the first_seen timestamp for the series in the metadata table
func createTestSeries(labels map[string]string, points []v3.Point) *v3.Series {
func createTestSeries(labels map[string]string, points []*qbtypes.TimeSeriesValue) *qbtypes.TimeSeries {
if points == nil {
points = []v3.Point{}
points = []*qbtypes.TimeSeriesValue{}
}
return &v3.Series{
Labels: labels,
Points: points,
lbls := make([]*qbtypes.Label, 0, len(labels))
for k, v := range labels {
lbls = append(lbls, &qbtypes.Label{Key: telemetrytypes.TelemetryFieldKey{Name: k}, Value: v})
}
return &qbtypes.TimeSeries{
Labels: lbls,
Values: points,
}
}
// seriesEqual compares two v3.Series by their labels
// seriesEqual compares two *qbtypes.TimeSeries by their labels
// Returns true if the series have the same labels (order doesn't matter)
func seriesEqual(s1, s2 *v3.Series) bool {
if s1 == nil && s2 == nil {
return true
}
if s1 == nil || s2 == nil {
func seriesEqual(s1, s2 *qbtypes.TimeSeries) bool {
m1 := s1.LabelsMap()
m2 := s2.LabelsMap()
if len(m1) != len(m2) {
return false
}
if len(s1.Labels) != len(s2.Labels) {
return false
}
for k, v := range s1.Labels {
if s2.Labels[k] != v {
for k, v := range m1 {
if m2[k] != v {
return false
}
}
@@ -149,11 +149,11 @@ func createPostableRule(compositeQuery *v3.CompositeQuery) ruletypes.PostableRul
type filterNewSeriesTestCase struct {
name string
compositeQuery *v3.CompositeQuery
series []*v3.Series
series []*qbtypes.TimeSeries
firstSeenMap map[telemetrytypes.MetricMetadataLookupKey]int64
newGroupEvalDelay valuer.TextDuration
evalTime time.Time
expectedFiltered []*v3.Series // series that should be in the final filtered result (old enough)
expectedFiltered []*qbtypes.TimeSeries // series that should be in the final filtered result (old enough)
expectError bool
}
@@ -193,7 +193,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc-old", "env": "prod"}, nil),
createTestSeries(map[string]string{"service_name": "svc-new", "env": "prod"}, nil),
createTestSeries(map[string]string{"service_name": "svc-missing", "env": "stage"}, nil),
@@ -205,7 +205,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
),
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{
expectedFiltered: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc-old", "env": "prod"}, nil),
createTestSeries(map[string]string{"service_name": "svc-missing", "env": "stage"}, nil),
}, // svc-old and svc-missing should be included; svc-new is filtered out
@@ -227,7 +227,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc-new1", "env": "prod"}, nil),
createTestSeries(map[string]string{"service_name": "svc-new2", "env": "stage"}, nil),
},
@@ -237,7 +237,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
),
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{}, // all should be filtered out (new series)
expectedFiltered: []*qbtypes.TimeSeries{}, // all should be filtered out (new series)
},
{
name: "all old series - ClickHouse query",
@@ -254,7 +254,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc-old1", "env": "prod"}, nil),
createTestSeries(map[string]string{"service_name": "svc-old2", "env": "stage"}, nil),
},
@@ -264,7 +264,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
),
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{
expectedFiltered: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc-old1", "env": "prod"}, nil),
createTestSeries(map[string]string{"service_name": "svc-old2", "env": "stage"}, nil),
}, // all should be included (old series)
@@ -292,13 +292,13 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1", "env": "prod"}, nil),
},
firstSeenMap: make(map[telemetrytypes.MetricMetadataLookupKey]int64),
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{
expectedFiltered: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1", "env": "prod"}, nil),
}, // early return, no filtering - all series included
},
@@ -322,13 +322,13 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1", "env": "prod"}, nil),
},
firstSeenMap: make(map[telemetrytypes.MetricMetadataLookupKey]int64),
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{
expectedFiltered: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1", "env": "prod"}, nil),
}, // early return, no filtering - all series included
},
@@ -358,13 +358,13 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"status": "200"}, nil), // no service_name or env
},
firstSeenMap: make(map[telemetrytypes.MetricMetadataLookupKey]int64),
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{
expectedFiltered: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"status": "200"}, nil),
}, // series included as we can't decide if it's new or old
},
@@ -385,7 +385,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc-old", "env": "prod"}, nil),
createTestSeries(map[string]string{"service_name": "svc-no-metadata", "env": "prod"}, nil),
},
@@ -393,7 +393,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
// svc-no-metadata has no entry in firstSeenMap
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{
expectedFiltered: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc-old", "env": "prod"}, nil),
createTestSeries(map[string]string{"service_name": "svc-no-metadata", "env": "prod"}, nil),
}, // both should be included - svc-old is old, svc-no-metadata can't be decided
@@ -413,7 +413,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc-partial", "env": "prod"}, nil),
},
// Only provide metadata for service_name, not env
@@ -423,7 +423,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{
expectedFiltered: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc-partial", "env": "prod"}, nil),
}, // has some metadata, uses max first_seen which is old
},
@@ -453,11 +453,11 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{},
series: []*qbtypes.TimeSeries{},
firstSeenMap: make(map[telemetrytypes.MetricMetadataLookupKey]int64),
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{},
expectedFiltered: []*qbtypes.TimeSeries{},
},
{
name: "zero delay - Builder",
@@ -485,13 +485,13 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1", "env": "prod"}, nil),
},
firstSeenMap: createFirstSeenMap("request_total", defaultGroupByFields, defaultEvalTime, defaultDelay, true, "svc1", "prod"),
newGroupEvalDelay: valuer.TextDuration{}, // zero delay
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{
expectedFiltered: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1", "env": "prod"}, nil),
}, // with zero delay, all series pass
},
@@ -526,7 +526,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1", "env": "prod"}, nil),
},
firstSeenMap: mergeFirstSeenMaps(
@@ -535,7 +535,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
),
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{
expectedFiltered: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1", "env": "prod"}, nil),
},
},
@@ -565,7 +565,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1", "env": "prod"}, nil),
},
// service_name is old, env is new - should use max (new)
@@ -575,7 +575,7 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
),
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{}, // max first_seen is new, so should be filtered out
expectedFiltered: []*qbtypes.TimeSeries{}, // max first_seen is new, so should be filtered out
},
{
name: "Logs query - should skip filtering and return empty skip indexes",
@@ -600,14 +600,14 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1"}, nil),
createTestSeries(map[string]string{"service_name": "svc2"}, nil),
},
firstSeenMap: make(map[telemetrytypes.MetricMetadataLookupKey]int64),
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{
expectedFiltered: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1"}, nil),
createTestSeries(map[string]string{"service_name": "svc2"}, nil),
}, // Logs queries should return early, no filtering - all included
@@ -635,14 +635,14 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
},
},
},
series: []*v3.Series{
series: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1"}, nil),
createTestSeries(map[string]string{"service_name": "svc2"}, nil),
},
firstSeenMap: make(map[telemetrytypes.MetricMetadataLookupKey]int64),
newGroupEvalDelay: defaultNewGroupEvalDelay,
evalTime: defaultEvalTime,
expectedFiltered: []*v3.Series{
expectedFiltered: []*qbtypes.TimeSeries{
createTestSeries(map[string]string{"service_name": "svc1"}, nil),
createTestSeries(map[string]string{"service_name": "svc2"}, nil),
}, // Traces queries should return early, no filtering - all included
@@ -724,14 +724,14 @@ func TestBaseRule_FilterNewSeries(t *testing.T) {
// Build a map to count occurrences of each unique label combination in expected series
expectedCounts := make(map[string]int)
for _, expected := range tt.expectedFiltered {
key := labelsKey(expected.Labels)
key := labelsKey(expected.LabelsMap())
expectedCounts[key]++
}
// Build a map to count occurrences of each unique label combination in filtered series
actualCounts := make(map[string]int)
for _, filtered := range filteredSeries {
key := labelsKey(filtered.Labels)
key := labelsKey(filtered.LabelsMap())
actualCounts[key]++
}

View File

@@ -12,19 +12,18 @@ import (
"github.com/SigNoz/signoz/pkg/query-service/formatter"
"github.com/SigNoz/signoz/pkg/query-service/interfaces"
"github.com/SigNoz/signoz/pkg/query-service/model"
v3 "github.com/SigNoz/signoz/pkg/query-service/model/v3"
qslabels "github.com/SigNoz/signoz/pkg/query-service/utils/labels"
"github.com/SigNoz/signoz/pkg/query-service/utils/times"
"github.com/SigNoz/signoz/pkg/query-service/utils/timestamp"
qbtypes "github.com/SigNoz/signoz/pkg/types/querybuildertypes/querybuildertypesv5"
"github.com/SigNoz/signoz/pkg/types/ruletypes"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
"github.com/SigNoz/signoz/pkg/valuer"
"github.com/prometheus/prometheus/promql"
)
type PromRule struct {
*BaseRule
version string
prometheus prometheus.Prometheus
}
@@ -48,7 +47,6 @@ func NewPromRule(
p := PromRule{
BaseRule: baseRule,
version: postableRule.Version,
prometheus: prometheus,
}
p.logger = logger
@@ -83,48 +81,30 @@ func (r *PromRule) GetSelectedQuery() string {
}
func (r *PromRule) getPqlQuery() (string, error) {
if r.version == "v5" {
if len(r.ruleCondition.CompositeQuery.Queries) > 0 {
selectedQuery := r.GetSelectedQuery()
for _, item := range r.ruleCondition.CompositeQuery.Queries {
switch item.Type {
case qbtypes.QueryTypePromQL:
promQuery, ok := item.Spec.(qbtypes.PromQuery)
if !ok {
return "", errors.NewInvalidInputf(errors.CodeInvalidInput, "invalid promql query spec %T", item.Spec)
}
if promQuery.Name == selectedQuery {
return promQuery.Query, nil
}
if len(r.ruleCondition.CompositeQuery.Queries) > 0 {
selectedQuery := r.GetSelectedQuery()
for _, item := range r.ruleCondition.CompositeQuery.Queries {
switch item.Type {
case qbtypes.QueryTypePromQL:
promQuery, ok := item.Spec.(qbtypes.PromQuery)
if !ok {
return "", errors.NewInvalidInputf(errors.CodeInvalidInput, "invalid promql query spec %T", item.Spec)
}
if promQuery.Name == selectedQuery {
return promQuery.Query, nil
}
}
}
return "", fmt.Errorf("invalid promql rule setup")
}
if r.ruleCondition.CompositeQuery.QueryType == v3.QueryTypePromQL {
if len(r.ruleCondition.CompositeQuery.PromQueries) > 0 {
selectedQuery := r.GetSelectedQuery()
if promQuery, ok := r.ruleCondition.CompositeQuery.PromQueries[selectedQuery]; ok {
query := promQuery.Query
if query == "" {
return query, fmt.Errorf("a promquery needs to be set for this rule to function")
}
return query, nil
}
}
}
return "", fmt.Errorf("invalid promql rule query")
return "", fmt.Errorf("invalid promql rule setup")
}
func (r *PromRule) matrixToV3Series(res promql.Matrix) []*v3.Series {
v3Series := make([]*v3.Series, 0, len(res))
func matrixToTimeSeries(res promql.Matrix) []*qbtypes.TimeSeries {
result := make([]*qbtypes.TimeSeries, 0, len(res))
for _, series := range res {
commonSeries := toCommonSeries(series)
v3Series = append(v3Series, &commonSeries)
result = append(result, promSeriesToTimeSeries(series))
}
return v3Series
return result
}
func (r *PromRule) buildAndRunQuery(ctx context.Context, ts time.Time) (ruletypes.Vector, error) {
@@ -143,31 +123,31 @@ func (r *PromRule) buildAndRunQuery(ctx context.Context, ts time.Time) (ruletype
return nil, err
}
matrixToProcess := r.matrixToV3Series(res)
seriesToProcess := matrixToTimeSeries(res)
hasData := len(matrixToProcess) > 0
hasData := len(seriesToProcess) > 0
if missingDataAlert := r.HandleMissingDataAlert(ctx, ts, hasData); missingDataAlert != nil {
return ruletypes.Vector{*missingDataAlert}, nil
}
// Filter out new series if newGroupEvalDelay is configured
if r.ShouldSkipNewGroups() {
filteredSeries, filterErr := r.BaseRule.FilterNewSeries(ctx, ts, matrixToProcess)
filteredSeries, filterErr := r.BaseRule.FilterNewSeries(ctx, ts, seriesToProcess)
// In case of error we log the error and continue with the original series
if filterErr != nil {
r.logger.ErrorContext(ctx, "Error filtering new series, ", "error", filterErr, "rule_name", r.Name())
} else {
matrixToProcess = filteredSeries
seriesToProcess = filteredSeries
}
}
var resultVector ruletypes.Vector
for _, series := range matrixToProcess {
for _, series := range seriesToProcess {
if !r.Condition().ShouldEval(series) {
r.logger.InfoContext(
ctx, "not enough data points to evaluate series, skipping",
"rule_id", r.ID(), "num_points", len(series.Points), "required_points", r.Condition().RequiredNumPoints,
"rule_id", r.ID(), "num_points", len(series.Values), "required_points", r.Condition().RequiredNumPoints,
)
continue
}
@@ -454,26 +434,25 @@ func (r *PromRule) RunAlertQuery(ctx context.Context, qs string, start, end time
}
}
func toCommonSeries(series promql.Series) v3.Series {
commonSeries := v3.Series{
Labels: make(map[string]string),
LabelsArray: make([]map[string]string, 0),
Points: make([]v3.Point, 0),
func promSeriesToTimeSeries(series promql.Series) *qbtypes.TimeSeries {
ts := &qbtypes.TimeSeries{
Labels: make([]*qbtypes.Label, 0, len(series.Metric)),
Values: make([]*qbtypes.TimeSeriesValue, 0, len(series.Floats)),
}
for _, lbl := range series.Metric {
commonSeries.Labels[lbl.Name] = lbl.Value
commonSeries.LabelsArray = append(commonSeries.LabelsArray, map[string]string{
lbl.Name: lbl.Value,
ts.Labels = append(ts.Labels, &qbtypes.Label{
Key: telemetrytypes.TelemetryFieldKey{Name: lbl.Name},
Value: lbl.Value,
})
}
for _, f := range series.Floats {
commonSeries.Points = append(commonSeries.Points, v3.Point{
ts.Values = append(ts.Values, &qbtypes.TimeSeriesValue{
Timestamp: f.T,
Value: f.F,
})
}
return commonSeries
return ts
}

View File

@@ -20,6 +20,7 @@ import (
qslabels "github.com/SigNoz/signoz/pkg/query-service/utils/labels"
"github.com/SigNoz/signoz/pkg/telemetrystore"
"github.com/SigNoz/signoz/pkg/telemetrystore/telemetrystoretest"
qbtypes "github.com/SigNoz/signoz/pkg/types/querybuildertypes/querybuildertypesv5"
"github.com/SigNoz/signoz/pkg/types/ruletypes"
"github.com/SigNoz/signoz/pkg/valuer"
)
@@ -47,9 +48,13 @@ func TestPromRuleEval(t *testing.T) {
RuleCondition: &ruletypes.RuleCondition{
CompositeQuery: &v3.CompositeQuery{
QueryType: v3.QueryTypePromQL,
PromQueries: map[string]*v3.PromQuery{
"A": {
Query: "dummy_query", // This is not used in the test
Queries: []qbtypes.QueryEnvelope{
{
Type: qbtypes.QueryTypePromQL,
Spec: qbtypes.PromQuery{
Name: "A",
Query: "dummy_query", // This is not used in the test
},
},
},
},
@@ -62,7 +67,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp string
matchType string
target float64
expectedAlertSample v3.Point
expectedAlertSample float64
expectedVectorValues []float64 // Expected values in result vector
}{
// Test cases for Equals Always
@@ -80,7 +85,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "3", // Equals
matchType: "2", // Always
target: 0.0,
expectedAlertSample: v3.Point{Value: 0.0},
expectedAlertSample: 0.0,
expectedVectorValues: []float64{0.0},
},
{
@@ -145,7 +150,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "3", // Equals
matchType: "1", // Once
target: 0.0,
expectedAlertSample: v3.Point{Value: 0.0},
expectedAlertSample: 0.0,
expectedVectorValues: []float64{0.0},
},
{
@@ -162,7 +167,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "3", // Equals
matchType: "1", // Once
target: 0.0,
expectedAlertSample: v3.Point{Value: 0.0},
expectedAlertSample: 0.0,
},
{
values: pql.Series{
@@ -178,7 +183,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "3", // Equals
matchType: "1", // Once
target: 0.0,
expectedAlertSample: v3.Point{Value: 0.0},
expectedAlertSample: 0.0,
},
{
values: pql.Series{
@@ -211,7 +216,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "1", // Greater Than
matchType: "2", // Always
target: 1.5,
expectedAlertSample: v3.Point{Value: 2.0},
expectedAlertSample: 2.0,
expectedVectorValues: []float64{2.0},
},
{
@@ -228,7 +233,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "1", // Above
matchType: "2", // Always
target: 2.0,
expectedAlertSample: v3.Point{Value: 3.0},
expectedAlertSample: 3.0,
},
{
values: pql.Series{
@@ -244,7 +249,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "2", // Below
matchType: "2", // Always
target: 13.0,
expectedAlertSample: v3.Point{Value: 12.0},
expectedAlertSample: 12.0,
},
{
values: pql.Series{
@@ -276,7 +281,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "1", // Greater Than
matchType: "1", // Once
target: 4.5,
expectedAlertSample: v3.Point{Value: 10.0},
expectedAlertSample: 10.0,
expectedVectorValues: []float64{10.0},
},
{
@@ -339,7 +344,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "4", // Not Equals
matchType: "2", // Always
target: 0.0,
expectedAlertSample: v3.Point{Value: 1.0},
expectedAlertSample: 1.0,
},
{
values: pql.Series{
@@ -371,7 +376,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "4", // Not Equals
matchType: "1", // Once
target: 0.0,
expectedAlertSample: v3.Point{Value: 1.0},
expectedAlertSample: 1.0,
},
{
values: pql.Series{
@@ -402,7 +407,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "4", // Not Equals
matchType: "1", // Once
target: 0.0,
expectedAlertSample: v3.Point{Value: 1.0},
expectedAlertSample: 1.0,
},
{
values: pql.Series{
@@ -418,7 +423,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "4", // Not Equals
matchType: "1", // Once
target: 0.0,
expectedAlertSample: v3.Point{Value: 1.0},
expectedAlertSample: 1.0,
},
// Test cases for Less Than Always
{
@@ -435,7 +440,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "2", // Less Than
matchType: "2", // Always
target: 4,
expectedAlertSample: v3.Point{Value: 1.5},
expectedAlertSample: 1.5,
},
{
values: pql.Series{
@@ -467,7 +472,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "2", // Less Than
matchType: "1", // Once
target: 4,
expectedAlertSample: v3.Point{Value: 2.5},
expectedAlertSample: 2.5,
},
{
values: pql.Series{
@@ -499,7 +504,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "3", // Equals
matchType: "3", // OnAverage
target: 6.0,
expectedAlertSample: v3.Point{Value: 6.0},
expectedAlertSample: 6.0,
},
{
values: pql.Series{
@@ -530,7 +535,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "4", // Not Equals
matchType: "3", // OnAverage
target: 4.5,
expectedAlertSample: v3.Point{Value: 6.0},
expectedAlertSample: 6.0,
},
{
values: pql.Series{
@@ -561,7 +566,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "1", // Greater Than
matchType: "3", // OnAverage
target: 4.5,
expectedAlertSample: v3.Point{Value: 6.0},
expectedAlertSample: 6.0,
},
{
values: pql.Series{
@@ -577,7 +582,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "2", // Less Than
matchType: "3", // OnAverage
target: 12.0,
expectedAlertSample: v3.Point{Value: 6.0},
expectedAlertSample: 6.0,
},
// Test cases for InTotal
{
@@ -594,7 +599,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "3", // Equals
matchType: "4", // InTotal
target: 30.0,
expectedAlertSample: v3.Point{Value: 30.0},
expectedAlertSample: 30.0,
},
{
values: pql.Series{
@@ -621,7 +626,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "4", // Not Equals
matchType: "4", // InTotal
target: 9.0,
expectedAlertSample: v3.Point{Value: 10.0},
expectedAlertSample: 10.0,
},
{
values: pql.Series{
@@ -645,7 +650,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "1", // Greater Than
matchType: "4", // InTotal
target: 10.0,
expectedAlertSample: v3.Point{Value: 20.0},
expectedAlertSample: 20.0,
},
{
values: pql.Series{
@@ -670,7 +675,7 @@ func TestPromRuleEval(t *testing.T) {
compareOp: "2", // Less Than
matchType: "4", // InTotal
target: 30.0,
expectedAlertSample: v3.Point{Value: 20.0},
expectedAlertSample: 20.0,
},
{
values: pql.Series{
@@ -708,7 +713,7 @@ func TestPromRuleEval(t *testing.T) {
assert.NoError(t, err)
}
resultVectors, err := rule.Threshold.Eval(toCommonSeries(c.values), rule.Unit(), ruletypes.EvalData{})
resultVectors, err := rule.Threshold.Eval(*promSeriesToTimeSeries(c.values), rule.Unit(), ruletypes.EvalData{})
assert.NoError(t, err)
// Compare full result vector with expected vector
@@ -724,12 +729,12 @@ func TestPromRuleEval(t *testing.T) {
if len(resultVectors) > 0 {
found := false
for _, sample := range resultVectors {
if sample.V == c.expectedAlertSample.Value {
if sample.V == c.expectedAlertSample {
found = true
break
}
}
assert.True(t, found, "Expected alert sample value %.2f not found in result vectors for case %d. Got values: %v", c.expectedAlertSample.Value, idx, actualValues)
assert.True(t, found, "Expected alert sample value %.2f not found in result vectors for case %d. Got values: %v", c.expectedAlertSample, idx, actualValues)
}
} else {
assert.Empty(t, resultVectors, "Expected no alert but got result vectors for case %d", idx)
@@ -754,9 +759,13 @@ func TestPromRuleUnitCombinations(t *testing.T) {
RuleCondition: &ruletypes.RuleCondition{
CompositeQuery: &v3.CompositeQuery{
QueryType: v3.QueryTypePromQL,
PromQueries: map[string]*v3.PromQuery{
"A": {
Query: "test_metric",
Queries: []qbtypes.QueryEnvelope{
{
Type: qbtypes.QueryTypePromQL,
Spec: qbtypes.PromQuery{
Name: "A",
Query: "test_metric",
},
},
},
},
@@ -1013,9 +1022,13 @@ func _Enable_this_after_9146_issue_fix_is_merged_TestPromRuleNoData(t *testing.T
RuleCondition: &ruletypes.RuleCondition{
CompositeQuery: &v3.CompositeQuery{
QueryType: v3.QueryTypePromQL,
PromQueries: map[string]*v3.PromQuery{
"A": {
Query: "test_metric",
Queries: []qbtypes.QueryEnvelope{
{
Type: qbtypes.QueryTypePromQL,
Spec: qbtypes.PromQuery{
Name: "A",
Query: "test_metric",
},
},
},
},
@@ -1124,9 +1137,13 @@ func TestMultipleThresholdPromRule(t *testing.T) {
RuleCondition: &ruletypes.RuleCondition{
CompositeQuery: &v3.CompositeQuery{
QueryType: v3.QueryTypePromQL,
PromQueries: map[string]*v3.PromQuery{
"A": {
Query: "test_metric",
Queries: []qbtypes.QueryEnvelope{
{
Type: qbtypes.QueryTypePromQL,
Spec: qbtypes.PromQuery{
Name: "A",
Query: "test_metric",
},
},
},
},
@@ -1361,8 +1378,11 @@ func TestPromRule_NoData(t *testing.T) {
MatchType: ruletypes.AtleastOnce,
CompositeQuery: &v3.CompositeQuery{
QueryType: v3.QueryTypePromQL,
PromQueries: map[string]*v3.PromQuery{
"A": {Query: "test_metric"},
Queries: []qbtypes.QueryEnvelope{
{
Type: qbtypes.QueryTypePromQL,
Spec: qbtypes.PromQuery{Name: "A", Query: "test_metric"},
},
},
},
Thresholds: &ruletypes.RuleThresholdData{
@@ -1486,8 +1506,11 @@ func TestPromRule_NoData_AbsentFor(t *testing.T) {
Target: &target,
CompositeQuery: &v3.CompositeQuery{
QueryType: v3.QueryTypePromQL,
PromQueries: map[string]*v3.PromQuery{
"A": {Query: "test_metric"},
Queries: []qbtypes.QueryEnvelope{
{
Type: qbtypes.QueryTypePromQL,
Spec: qbtypes.PromQuery{Name: "A", Query: "test_metric"},
},
},
},
Thresholds: &ruletypes.RuleThresholdData{
@@ -1635,8 +1658,11 @@ func TestPromRuleEval_RequireMinPoints(t *testing.T) {
MatchType: ruletypes.AtleastOnce,
CompositeQuery: &v3.CompositeQuery{
QueryType: v3.QueryTypePromQL,
PromQueries: map[string]*v3.PromQuery{
"A": {Query: "test_metric"},
Queries: []qbtypes.QueryEnvelope{
{
Type: qbtypes.QueryTypePromQL,
Spec: qbtypes.PromQuery{Name: "A", Query: "test_metric"},
},
},
},
},

View File

@@ -1,38 +1,24 @@
package rules
import (
"bytes"
"context"
"encoding/json"
"fmt"
"log/slog"
"math"
"net/url"
"reflect"
"text/template"
"time"
"github.com/SigNoz/signoz/pkg/contextlinks"
"github.com/SigNoz/signoz/pkg/query-service/common"
"github.com/SigNoz/signoz/pkg/query-service/model"
"github.com/SigNoz/signoz/pkg/query-service/postprocess"
"github.com/SigNoz/signoz/pkg/transition"
"github.com/SigNoz/signoz/pkg/types/ruletypes"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
"github.com/SigNoz/signoz/pkg/valuer"
"github.com/SigNoz/signoz/pkg/query-service/app/querier"
querierV2 "github.com/SigNoz/signoz/pkg/query-service/app/querier/v2"
"github.com/SigNoz/signoz/pkg/query-service/app/queryBuilder"
"github.com/SigNoz/signoz/pkg/query-service/interfaces"
v3 "github.com/SigNoz/signoz/pkg/query-service/model/v3"
"github.com/SigNoz/signoz/pkg/query-service/utils/labels"
querytemplate "github.com/SigNoz/signoz/pkg/query-service/utils/queryTemplate"
"github.com/SigNoz/signoz/pkg/query-service/utils/times"
"github.com/SigNoz/signoz/pkg/query-service/utils/timestamp"
logsv3 "github.com/SigNoz/signoz/pkg/query-service/app/logs/v3"
tracesV4 "github.com/SigNoz/signoz/pkg/query-service/app/traces/v4"
"github.com/SigNoz/signoz/pkg/query-service/formatter"
querierV5 "github.com/SigNoz/signoz/pkg/querier"
@@ -42,23 +28,9 @@ import (
type ThresholdRule struct {
*BaseRule
// Ever since we introduced the new metrics query builder, the version is "v4"
// for all the rules
// if the version is "v3", then we use the old querier
// if the version is "v4", then we use the new querierV2
version string
// querier is used for alerts created before the introduction of new metrics query builder
querier interfaces.Querier
// querierV2 is used for alerts created after the introduction of new metrics query builder
querierV2 interfaces.Querier
// querierV5 is used for alerts migrated after the introduction of new query builder
// querierV5 is the query builder v5 querier used for all alert rule evaluation
querierV5 querierV5.Querier
// used for attribute metadata enrichment for logs and traces
logsKeys map[string]v3.AttributeKey
spansKeys map[string]v3.AttributeKey
}
var _ Rule = (*ThresholdRule)(nil)
@@ -82,25 +54,10 @@ func NewThresholdRule(
}
t := ThresholdRule{
BaseRule: baseRule,
version: p.Version,
BaseRule: baseRule,
querierV5: querierV5,
}
querierOption := querier.QuerierOptions{
Reader: reader,
Cache: nil,
KeyGenerator: queryBuilder.NewKeyGenerator(),
}
querierOptsV2 := querierV2.QuerierOptions{
Reader: reader,
Cache: nil,
KeyGenerator: queryBuilder.NewKeyGenerator(),
}
t.querier = querier.NewQuerier(querierOption)
t.querierV2 = querierV2.NewQuerier(querierOptsV2)
t.querierV5 = querierV5
t.reader = reader
return &t, nil
}
@@ -120,169 +77,9 @@ func (r *ThresholdRule) Type() ruletypes.RuleType {
return ruletypes.RuleTypeThreshold
}
func (r *ThresholdRule) prepareQueryRange(ctx context.Context, ts time.Time) (*v3.QueryRangeParamsV3, error) {
func (r *ThresholdRule) prepareQueryRange(ctx context.Context, ts time.Time) (*qbtypes.QueryRangeRequest, error) {
r.logger.InfoContext(
ctx, "prepare query range request v4", "ts", ts.UnixMilli(), "eval_window", r.evalWindow.Milliseconds(), "eval_delay", r.evalDelay.Milliseconds(),
)
startTs, endTs := r.Timestamps(ts)
start, end := startTs.UnixMilli(), endTs.UnixMilli()
if r.ruleCondition.QueryType() == v3.QueryTypeClickHouseSQL {
params := &v3.QueryRangeParamsV3{
Start: start,
End: end,
Step: int64(math.Max(float64(common.MinAllowedStepInterval(start, end)), 60)),
CompositeQuery: &v3.CompositeQuery{
QueryType: r.ruleCondition.CompositeQuery.QueryType,
PanelType: r.ruleCondition.CompositeQuery.PanelType,
BuilderQueries: make(map[string]*v3.BuilderQuery),
ClickHouseQueries: make(map[string]*v3.ClickHouseQuery),
PromQueries: make(map[string]*v3.PromQuery),
Unit: r.ruleCondition.CompositeQuery.Unit,
},
Variables: make(map[string]interface{}),
NoCache: true,
}
querytemplate.AssignReservedVarsV3(params)
for name, chQuery := range r.ruleCondition.CompositeQuery.ClickHouseQueries {
if chQuery.Disabled {
continue
}
tmpl := template.New("clickhouse-query")
tmpl, err := tmpl.Parse(chQuery.Query)
if err != nil {
return nil, err
}
var query bytes.Buffer
err = tmpl.Execute(&query, params.Variables)
if err != nil {
return nil, err
}
params.CompositeQuery.ClickHouseQueries[name] = &v3.ClickHouseQuery{
Query: query.String(),
Disabled: chQuery.Disabled,
Legend: chQuery.Legend,
}
}
return params, nil
}
if r.ruleCondition.CompositeQuery != nil && r.ruleCondition.CompositeQuery.BuilderQueries != nil {
for _, q := range r.ruleCondition.CompositeQuery.BuilderQueries {
// If the step interval is less than the minimum allowed step interval, set it to the minimum allowed step interval
if minStep := common.MinAllowedStepInterval(start, end); q.StepInterval < minStep {
q.StepInterval = minStep
}
q.SetShiftByFromFunc()
if q.DataSource == v3.DataSourceMetrics {
// if the time range is greater than 1 day, and less than 1 week set the step interval to be multiple of 5 minutes
// if the time range is greater than 1 week, set the step interval to be multiple of 30 mins
if end-start >= 24*time.Hour.Milliseconds() && end-start < 7*24*time.Hour.Milliseconds() {
q.StepInterval = int64(math.Round(float64(q.StepInterval)/300)) * 300
} else if end-start >= 7*24*time.Hour.Milliseconds() {
q.StepInterval = int64(math.Round(float64(q.StepInterval)/1800)) * 1800
}
}
}
}
if r.ruleCondition.CompositeQuery.PanelType != v3.PanelTypeGraph {
r.ruleCondition.CompositeQuery.PanelType = v3.PanelTypeGraph
}
// default mode
return &v3.QueryRangeParamsV3{
Start: start,
End: end,
Step: int64(math.Max(float64(common.MinAllowedStepInterval(start, end)), 60)),
CompositeQuery: r.ruleCondition.CompositeQuery,
Variables: make(map[string]interface{}),
NoCache: true,
}, nil
}
func (r *ThresholdRule) prepareLinksToLogs(ctx context.Context, ts time.Time, lbls labels.Labels) string {
if r.version == "v5" {
return r.prepareLinksToLogsV5(ctx, ts, lbls)
}
selectedQuery := r.GetSelectedQuery()
qr, err := r.prepareQueryRange(ctx, ts)
if err != nil {
return ""
}
start := time.UnixMilli(qr.Start)
end := time.UnixMilli(qr.End)
// TODO(srikanthccv): handle formula queries
if selectedQuery < "A" || selectedQuery > "Z" {
return ""
}
q := r.ruleCondition.CompositeQuery.BuilderQueries[selectedQuery]
if q == nil {
return ""
}
if q.DataSource != v3.DataSourceLogs {
return ""
}
queryFilter := []v3.FilterItem{}
if q.Filters != nil {
queryFilter = q.Filters.Items
}
filterItems := contextlinks.PrepareFilters(lbls.Map(), queryFilter, q.GroupBy, r.logsKeys)
return contextlinks.PrepareLinksToLogs(start, end, filterItems)
}
func (r *ThresholdRule) prepareLinksToTraces(ctx context.Context, ts time.Time, lbls labels.Labels) string {
if r.version == "v5" {
return r.prepareLinksToTracesV5(ctx, ts, lbls)
}
selectedQuery := r.GetSelectedQuery()
qr, err := r.prepareQueryRange(ctx, ts)
if err != nil {
return ""
}
start := time.UnixMilli(qr.Start)
end := time.UnixMilli(qr.End)
// TODO(srikanthccv): handle formula queries
if selectedQuery < "A" || selectedQuery > "Z" {
return ""
}
q := r.ruleCondition.CompositeQuery.BuilderQueries[selectedQuery]
if q == nil {
return ""
}
if q.DataSource != v3.DataSourceTraces {
return ""
}
queryFilter := []v3.FilterItem{}
if q.Filters != nil {
queryFilter = q.Filters.Items
}
filterItems := contextlinks.PrepareFilters(lbls.Map(), queryFilter, q.GroupBy, r.spansKeys)
return contextlinks.PrepareLinksToTraces(start, end, filterItems)
}
func (r *ThresholdRule) prepareQueryRangeV5(ctx context.Context, ts time.Time) (*qbtypes.QueryRangeRequest, error) {
r.logger.InfoContext(
ctx, "prepare query range request v5", "ts", ts.UnixMilli(), "eval_window", r.evalWindow.Milliseconds(), "eval_delay", r.evalDelay.Milliseconds(),
ctx, "prepare query range request", "ts", ts.UnixMilli(), "eval_window", r.evalWindow.Milliseconds(), "eval_delay", r.evalDelay.Milliseconds(),
)
startTs, endTs := r.Timestamps(ts)
@@ -302,10 +99,10 @@ func (r *ThresholdRule) prepareQueryRangeV5(ctx context.Context, ts time.Time) (
return req, nil
}
func (r *ThresholdRule) prepareLinksToLogsV5(ctx context.Context, ts time.Time, lbls labels.Labels) string {
func (r *ThresholdRule) prepareLinksToLogs(ctx context.Context, ts time.Time, lbls labels.Labels) string {
selectedQuery := r.GetSelectedQuery()
qr, err := r.prepareQueryRangeV5(ctx, ts)
qr, err := r.prepareQueryRange(ctx, ts)
if err != nil {
return ""
}
@@ -342,10 +139,10 @@ func (r *ThresholdRule) prepareLinksToLogsV5(ctx context.Context, ts time.Time,
return contextlinks.PrepareLinksToLogsV5(start, end, whereClause)
}
func (r *ThresholdRule) prepareLinksToTracesV5(ctx context.Context, ts time.Time, lbls labels.Labels) string {
func (r *ThresholdRule) prepareLinksToTraces(ctx context.Context, ts time.Time, lbls labels.Labels) string {
selectedQuery := r.GetSelectedQuery()
qr, err := r.prepareQueryRangeV5(ctx, ts)
qr, err := r.prepareQueryRange(ctx, ts)
if err != nil {
return ""
}
@@ -391,115 +188,6 @@ func (r *ThresholdRule) buildAndRunQuery(ctx context.Context, orgID valuer.UUID,
if err != nil {
return nil, err
}
err = r.PopulateTemporality(ctx, orgID, params)
if err != nil {
return nil, fmt.Errorf("internal error while setting temporality")
}
if params.CompositeQuery.QueryType == v3.QueryTypeBuilder {
hasLogsQuery := false
hasTracesQuery := false
for _, query := range params.CompositeQuery.BuilderQueries {
if query.DataSource == v3.DataSourceLogs {
hasLogsQuery = true
}
if query.DataSource == v3.DataSourceTraces {
hasTracesQuery = true
}
}
if hasLogsQuery {
// check if any enrichment is required for logs if yes then enrich them
if logsv3.EnrichmentRequired(params) {
logsFields, apiErr := r.reader.GetLogFieldsFromNames(ctx, logsv3.GetFieldNames(params.CompositeQuery))
if apiErr != nil {
return nil, apiErr.ToError()
}
logsKeys := model.GetLogFieldsV3(ctx, params, logsFields)
r.logsKeys = logsKeys
logsv3.Enrich(params, logsKeys)
}
}
if hasTracesQuery {
spanKeys, err := r.reader.GetSpanAttributeKeysByNames(ctx, logsv3.GetFieldNames(params.CompositeQuery))
if err != nil {
return nil, err
}
r.spansKeys = spanKeys
tracesV4.Enrich(params, spanKeys)
}
}
var results []*v3.Result
var queryErrors map[string]error
if r.version == "v4" {
results, queryErrors, err = r.querierV2.QueryRange(ctx, orgID, params)
} else {
results, queryErrors, err = r.querier.QueryRange(ctx, orgID, params)
}
if err != nil {
r.logger.ErrorContext(ctx, "failed to get alert query range result", "rule_name", r.Name(), "error", err, "query_errors", queryErrors)
return nil, fmt.Errorf("internal error while querying")
}
if params.CompositeQuery.QueryType == v3.QueryTypeBuilder {
results, err = postprocess.PostProcessResult(results, params)
if err != nil {
r.logger.ErrorContext(ctx, "failed to post process result", "rule_name", r.Name(), "error", err)
return nil, fmt.Errorf("internal error while post processing")
}
}
selectedQuery := r.GetSelectedQuery()
var queryResult *v3.Result
for _, res := range results {
if res.QueryName == selectedQuery {
queryResult = res
break
}
}
hasData := queryResult != nil && len(queryResult.Series) > 0
if missingDataAlert := r.HandleMissingDataAlert(ctx, ts, hasData); missingDataAlert != nil {
return ruletypes.Vector{*missingDataAlert}, nil
}
var resultVector ruletypes.Vector
if queryResult == nil {
r.logger.WarnContext(ctx, "query result is nil", "rule_name", r.Name(), "query_name", selectedQuery)
return resultVector, nil
}
for _, series := range queryResult.Series {
if !r.Condition().ShouldEval(series) {
r.logger.InfoContext(ctx, "not enough data points to evaluate series, skipping", "ruleid", r.ID(), "numPoints", len(series.Points), "requiredPoints", r.Condition().RequiredNumPoints)
continue
}
resultSeries, err := r.Threshold.Eval(*series, r.Unit(), ruletypes.EvalData{
ActiveAlerts: r.ActiveAlertsLabelFP(),
SendUnmatched: r.ShouldSendUnmatched(),
})
if err != nil {
return nil, err
}
resultVector = append(resultVector, resultSeries...)
}
return resultVector, nil
}
func (r *ThresholdRule) buildAndRunQueryV5(ctx context.Context, orgID valuer.UUID, ts time.Time) (ruletypes.Vector, error) {
params, err := r.prepareQueryRangeV5(ctx, ts)
if err != nil {
return nil, err
}
var results []*v3.Result
v5Result, err := r.querierV5.QueryRange(ctx, orgID, params)
if err != nil {
@@ -507,26 +195,24 @@ func (r *ThresholdRule) buildAndRunQueryV5(ctx context.Context, orgID valuer.UUI
return nil, fmt.Errorf("internal error while querying")
}
for _, item := range v5Result.Data.Results {
if tsData, ok := item.(*qbtypes.TimeSeriesData); ok {
results = append(results, transition.ConvertV5TimeSeriesDataToV4Result(tsData))
} else {
// NOTE: should not happen but just to ensure we don't miss it if it happens for some reason
r.logger.WarnContext(ctx, "expected qbtypes.TimeSeriesData but got", "item_type", reflect.TypeOf(item))
}
}
selectedQuery := r.GetSelectedQuery()
var queryResult *v3.Result
for _, res := range results {
if res.QueryName == selectedQuery {
queryResult = res
var queryResult *qbtypes.TimeSeriesData
for _, item := range v5Result.Data.Results {
if tsData, ok := item.(*qbtypes.TimeSeriesData); ok && tsData.QueryName == selectedQuery {
queryResult = tsData
break
}
}
hasData := queryResult != nil && len(queryResult.Series) > 0
var allSeries []*qbtypes.TimeSeries
if queryResult != nil {
for _, bucket := range queryResult.Aggregations {
allSeries = append(allSeries, bucket.Series...)
}
}
hasData := len(allSeries) > 0
if missingDataAlert := r.HandleMissingDataAlert(ctx, ts, hasData); missingDataAlert != nil {
return ruletypes.Vector{*missingDataAlert}, nil
}
@@ -539,7 +225,7 @@ func (r *ThresholdRule) buildAndRunQueryV5(ctx context.Context, orgID valuer.UUI
}
// Filter out new series if newGroupEvalDelay is configured
seriesToProcess := queryResult.Series
seriesToProcess := allSeries
if r.ShouldSkipNewGroups() {
filteredSeries, filterErr := r.BaseRule.FilterNewSeries(ctx, ts, seriesToProcess)
// In case of error we log the error and continue with the original series
@@ -552,7 +238,7 @@ func (r *ThresholdRule) buildAndRunQueryV5(ctx context.Context, orgID valuer.UUI
for _, series := range seriesToProcess {
if !r.Condition().ShouldEval(series) {
r.logger.InfoContext(ctx, "not enough data points to evaluate series, skipping", "ruleid", r.ID(), "numPoints", len(series.Points), "requiredPoints", r.Condition().RequiredNumPoints)
r.logger.InfoContext(ctx, "not enough data points to evaluate series, skipping", "ruleid", r.ID(), "numPoints", len(series.Values), "requiredPoints", r.Condition().RequiredNumPoints)
continue
}
resultSeries, err := r.Threshold.Eval(*series, r.Unit(), ruletypes.EvalData{
@@ -573,16 +259,7 @@ func (r *ThresholdRule) Eval(ctx context.Context, ts time.Time) (int, error) {
valueFormatter := formatter.FromUnit(r.Unit())
var res ruletypes.Vector
var err error
if r.version == "v5" {
r.logger.InfoContext(ctx, "running v5 query")
res, err = r.buildAndRunQueryV5(ctx, r.orgID, ts)
} else {
r.logger.InfoContext(ctx, "running v4 query")
res, err = r.buildAndRunQuery(ctx, r.orgID, ts)
}
res, err := r.buildAndRunQuery(ctx, r.orgID, ts)
if err != nil {
return 0, err

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -483,22 +483,6 @@ func (v *filterExpressionVisitor) VisitComparison(ctx *grammar.ComparisonContext
value1 := v.Visit(values[0])
value2 := v.Visit(values[1])
switch value1.(type) {
case float64:
if _, ok := value2.(float64); !ok {
v.errors = append(v.errors, fmt.Sprintf("value type mismatch for key %s: expected number for both operands", keys[0].Name))
return ""
}
case string:
if _, ok := value2.(string); !ok {
v.errors = append(v.errors, fmt.Sprintf("value type mismatch for key %s: expected string for both operands", keys[0].Name))
return ""
}
default:
v.errors = append(v.errors, fmt.Sprintf("value type mismatch for key %s: operands must be number or string", keys[0].Name))
return ""
}
var conds []string
for _, key := range keys {
condition, err := v.conditionBuilder.ConditionFor(context.Background(), key, op, []any{value1, value2}, v.builder, v.startNs, v.endNs)
@@ -871,7 +855,7 @@ func (v *filterExpressionVisitor) VisitKey(ctx *grammar.KeyContext) any {
// 1. either user meant key ( this is already handled above in fieldKeysForName )
// 2. or user meant `attribute.key` we look up in the map for all possible field keys with name 'attribute.key'
// Note:
// Note:
// If user only wants to search `attribute.key`, then they have to use `attribute.attribute.key`
// If user only wants to search `key`, then they have to use `key`
// If user wants to search both, they can use `attribute.key` and we will resolve the ambiguity

View File

@@ -375,6 +375,13 @@ func mergeAndEnsureBackwardCompatibility(ctx context.Context, logger *slog.Logge
config.Flagger.Config.Boolean[flagger.FeatureKafkaSpanEval.String()] = os.Getenv("KAFKA_SPAN_EVAL") == "true"
}
if os.Getenv("INTERPOLATION_ENABLED") != "" {
logger.WarnContext(ctx, "[Deprecated] env INTERPOLATION_ENABLED is deprecated and scheduled for removal. Please use SIGNOZ_FLAGGER_CONFIG_BOOLEAN_INTERPOLATION__ENABLED instead.")
if config.Flagger.Config.Boolean == nil {
config.Flagger.Config.Boolean = make(map[string]bool)
}
config.Flagger.Config.Boolean[flagger.FeatureInterpolationEnabled.String()] = os.Getenv("INTERPOLATION_ENABLED") == "true"
}
}
func (config Config) Collect(_ context.Context, _ valuer.UUID) (map[string]any, error) {

View File

@@ -167,6 +167,7 @@ func NewSQLMigrationProviderFactories(
sqlmigration.NewMigrateRbacToAuthzFactory(sqlstore),
sqlmigration.NewMigratePublicDashboardsFactory(sqlstore),
sqlmigration.NewAddAnonymousPublicDashboardTransactionFactory(sqlstore),
sqlmigration.NewMigrateRulesV4ToV5Factory(sqlstore, telemetryStore),
)
}

View File

@@ -0,0 +1,194 @@
package sqlmigration
import (
"context"
"database/sql"
"encoding/json"
"log/slog"
"github.com/SigNoz/signoz/pkg/factory"
"github.com/SigNoz/signoz/pkg/sqlstore"
"github.com/SigNoz/signoz/pkg/telemetrystore"
"github.com/SigNoz/signoz/pkg/transition"
"github.com/uptrace/bun"
"github.com/uptrace/bun/migrate"
)
type migrateRulesV4ToV5 struct {
store sqlstore.SQLStore
telemetryStore telemetrystore.TelemetryStore
logger *slog.Logger
}
func NewMigrateRulesV4ToV5Factory(
store sqlstore.SQLStore,
telemetryStore telemetrystore.TelemetryStore,
) factory.ProviderFactory[SQLMigration, Config] {
return factory.NewProviderFactory(
factory.MustNewName("migrate_rules_v4_to_v5"),
func(ctx context.Context, ps factory.ProviderSettings, c Config) (SQLMigration, error) {
return &migrateRulesV4ToV5{
store: store,
telemetryStore: telemetryStore,
logger: ps.Logger,
}, nil
})
}
func (migration *migrateRulesV4ToV5) Register(migrations *migrate.Migrations) error {
if err := migrations.Register(migration.Up, migration.Down); err != nil {
return err
}
return nil
}
func (migration *migrateRulesV4ToV5) getLogDuplicateKeys(ctx context.Context) ([]string, error) {
query := `
SELECT name
FROM (
SELECT DISTINCT name FROM signoz_logs.distributed_logs_attribute_keys
INTERSECT
SELECT DISTINCT name FROM signoz_logs.distributed_logs_resource_keys
)
ORDER BY name
`
rows, err := migration.telemetryStore.ClickhouseDB().Query(ctx, query)
if err != nil {
migration.logger.WarnContext(ctx, "failed to query log duplicate keys", "error", err)
return nil, nil
}
defer rows.Close()
var keys []string
for rows.Next() {
var key string
if err := rows.Scan(&key); err != nil {
migration.logger.WarnContext(ctx, "failed to scan log duplicate key", "error", err)
continue
}
keys = append(keys, key)
}
return keys, nil
}
func (migration *migrateRulesV4ToV5) getTraceDuplicateKeys(ctx context.Context) ([]string, error) {
query := `
SELECT tagKey
FROM signoz_traces.distributed_span_attributes_keys
WHERE tagType IN ('tag', 'resource')
GROUP BY tagKey
HAVING COUNT(DISTINCT tagType) > 1
ORDER BY tagKey
`
rows, err := migration.telemetryStore.ClickhouseDB().Query(ctx, query)
if err != nil {
migration.logger.WarnContext(ctx, "failed to query trace duplicate keys", "error", err)
return nil, nil
}
defer rows.Close()
var keys []string
for rows.Next() {
var key string
if err := rows.Scan(&key); err != nil {
migration.logger.WarnContext(ctx, "failed to scan trace duplicate key", "error", err)
continue
}
keys = append(keys, key)
}
return keys, nil
}
func (migration *migrateRulesV4ToV5) Up(ctx context.Context, db *bun.DB) error {
logsKeys, err := migration.getLogDuplicateKeys(ctx)
if err != nil {
return err
}
tracesKeys, err := migration.getTraceDuplicateKeys(ctx)
if err != nil {
return err
}
tx, err := db.BeginTx(ctx, nil)
if err != nil {
return err
}
defer func() {
_ = tx.Rollback()
}()
var rules []struct {
ID string `bun:"id"`
Data map[string]any `bun:"data"`
}
err = tx.NewSelect().
Table("rule").
Column("id", "data").
Scan(ctx, &rules)
if err != nil {
if err == sql.ErrNoRows {
return nil
}
return err
}
alertsMigrator := transition.NewAlertMigrateV5(migration.logger, logsKeys, tracesKeys)
for _, rule := range rules {
version, _ := rule.Data["version"].(string)
if version == "v5" {
continue
}
migration.logger.InfoContext(ctx, "migrating rule v4 to v5", "rule_id", rule.ID, "current_version", version)
// Check if the queries envelope already exists and is non-empty
hasQueriesEnvelope := false
if condition, ok := rule.Data["condition"].(map[string]any); ok {
if compositeQuery, ok := condition["compositeQuery"].(map[string]any); ok {
if queries, ok := compositeQuery["queries"].([]any); ok && len(queries) > 0 {
hasQueriesEnvelope = true
}
}
}
if hasQueriesEnvelope {
// Case 2: Already has queries envelope, just bump version
migration.logger.InfoContext(ctx, "rule already has queries envelope, bumping version", "rule_id", rule.ID)
rule.Data["version"] = "v5"
} else {
// Case 1: Old format, run full migration
migration.logger.InfoContext(ctx, "rule has old format, running full migration", "rule_id", rule.ID)
alertsMigrator.Migrate(ctx, rule.Data)
// Force version to v5 regardless of Migrate return value
rule.Data["version"] = "v5"
}
dataJSON, err := json.Marshal(rule.Data)
if err != nil {
return err
}
_, err = tx.NewUpdate().
Table("rule").
Set("data = ?", string(dataJSON)).
Where("id = ?", rule.ID).
Exec(ctx)
if err != nil {
return err
}
}
return tx.Commit()
}
func (migration *migrateRulesV4ToV5) Down(ctx context.Context, db *bun.DB) error {
return nil
}

View File

@@ -5,7 +5,6 @@ import (
"fmt"
"log/slog"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/factory"
"github.com/SigNoz/signoz/pkg/querybuilder"
"github.com/SigNoz/signoz/pkg/telemetrymetrics"
@@ -74,7 +73,7 @@ func (b *meterQueryStatementBuilder) buildPipelineStatement(
cteArgs [][]any
)
if qbtypes.CanShortCircuitDelta(query.Aggregations[0]) {
if b.metricsStatementBuilder.CanShortCircuitDelta(query) {
// spatial_aggregation_cte directly for certain delta queries
if frag, args, err := b.buildTemporalAggDeltaFastPath(ctx, start, end, query, keys, variables); err != nil {
return nil, err
@@ -92,9 +91,8 @@ func (b *meterQueryStatementBuilder) buildPipelineStatement(
}
// spatial_aggregation_cte
if frag, args, err := b.buildSpatialAggregationCTE(ctx, start, end, query, keys); err != nil {
return nil, err
} else if frag != "" {
frag, args := b.buildSpatialAggregationCTE(ctx, start, end, query, keys)
if frag != "" {
cteFragments = append(cteFragments, frag)
cteArgs = append(cteArgs, args)
}
@@ -124,16 +122,13 @@ func (b *meterQueryStatementBuilder) buildTemporalAggDeltaFastPath(
for _, g := range query.GroupBy {
col, err := b.fm.ColumnExpressionFor(ctx, &g.TelemetryFieldKey, keys)
if err != nil {
return "", nil, err
return "", []any{}, err
}
sb.SelectMore(col)
}
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
}
@@ -155,7 +150,7 @@ func (b *meterQueryStatementBuilder) buildTemporalAggDeltaFastPath(
Variables: variables,
}, start, end)
if err != nil {
return "", nil, err
return "", []any{}, err
}
}
if filterWhere != nil {
@@ -213,11 +208,8 @@ func (b *meterQueryStatementBuilder) buildTemporalAggDelta(
}
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality,
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality,
query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
}
@@ -286,10 +278,7 @@ func (b *meterQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
}
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
baseSb.SelectMore(fmt.Sprintf("%s AS per_series_value", aggCol))
baseSb.From(fmt.Sprintf("%s.%s AS points", DBName, tbl))
@@ -326,23 +315,25 @@ func (b *meterQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
switch query.Aggregations[0].TimeAggregation {
case metrictypes.TimeAggregationRate:
rateExpr := fmt.Sprintf(telemetrymetrics.RateWithoutNegative, start, start)
wrapped := sqlbuilder.NewSelectBuilder()
wrapped.Select("ts")
for _, g := range query.GroupBy {
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", telemetrymetrics.RateTmpl))
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", rateExpr))
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
case metrictypes.TimeAggregationIncrease:
incExpr := fmt.Sprintf(telemetrymetrics.IncreaseWithoutNegative, start, start)
wrapped := sqlbuilder.NewSelectBuilder()
wrapped.Select("ts")
for _, g := range query.GroupBy {
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", telemetrymetrics.IncreaseTmpl))
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", incExpr))
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
@@ -357,15 +348,7 @@ func (b *meterQueryStatementBuilder) buildSpatialAggregationCTE(
_ uint64,
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
_ map[string][]*telemetrytypes.TelemetryFieldKey,
) (string, []any, error) {
if query.Aggregations[0].SpaceAggregation.IsZero() {
return "", nil, errors.Newf(
errors.TypeInvalidInput,
errors.CodeInvalidInput,
"invalid space aggregation, should be one of the following: [`sum`, `avg`, `min`, `max`, `count`]",
)
}
) (string, []any) {
sb := sqlbuilder.NewSelectBuilder()
sb.Select("ts")
@@ -382,5 +365,5 @@ func (b *meterQueryStatementBuilder) buildSpatialAggregationCTE(
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
q, args := sb.BuildWithFlavor(sqlbuilder.ClickHouse)
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args, nil
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args
}

View File

@@ -3,7 +3,6 @@ package telemetrymeter
import (
"time"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/types/metrictypes"
)
@@ -64,7 +63,7 @@ func AggregationColumnForSamplesTable(
temporality metrictypes.Temporality,
timeAggregation metrictypes.TimeAggregation,
tableHints *metrictypes.MetricTableHints,
) (string, error) {
) string {
tableName := WhichSamplesTableToUse(start, end, metricType, timeAggregation, tableHints)
var aggregationColumn string
switch temporality {
@@ -191,13 +190,5 @@ func AggregationColumnForSamplesTable(
}
}
if aggregationColumn == "" {
return "", errors.Newf(
errors.TypeInvalidInput,
errors.CodeInvalidInput,
"invalid time aggregation, should be one of the following: [`latest`, `sum`, `avg`, `min`, `max`, `count`, `rate`, `increase`]",
)
}
return aggregationColumn, nil
return aggregationColumn
}

View File

@@ -29,7 +29,13 @@ func (c *conditionBuilder) conditionFor(
sb *sqlbuilder.SelectBuilder,
) (string, error) {
if operator.IsStringSearchOperator() {
switch operator {
case qbtypes.FilterOperatorContains,
qbtypes.FilterOperatorNotContains,
qbtypes.FilterOperatorILike,
qbtypes.FilterOperatorNotILike,
qbtypes.FilterOperatorLike,
qbtypes.FilterOperatorNotLike:
value = querybuilder.FormatValueForContains(value)
}
@@ -38,18 +44,6 @@ func (c *conditionBuilder) conditionFor(
return "", err
}
// TODO(srikanthccv): use the same data type collision handling when metrics schemas are updated
switch v := value.(type) {
case float64:
tblFieldName = fmt.Sprintf("toFloat64OrNull(%s)", tblFieldName)
case []any:
if len(v) > 0 && (operator == qbtypes.FilterOperatorBetween || operator == qbtypes.FilterOperatorNotBetween) {
if _, ok := v[0].(float64); ok {
tblFieldName = fmt.Sprintf("toFloat64OrNull(%s)", tblFieldName)
}
}
}
switch operator {
case qbtypes.FilterOperatorEqual:
return sb.E(tblFieldName, value), nil

View File

@@ -5,27 +5,67 @@ import (
"fmt"
"log/slog"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/factory"
"github.com/SigNoz/signoz/pkg/flagger"
"github.com/SigNoz/signoz/pkg/querybuilder"
"github.com/SigNoz/signoz/pkg/types/featuretypes"
"github.com/SigNoz/signoz/pkg/types/metrictypes"
qbtypes "github.com/SigNoz/signoz/pkg/types/querybuildertypes/querybuildertypesv5"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
"github.com/SigNoz/signoz/pkg/valuer"
"github.com/huandu/go-sqlbuilder"
"golang.org/x/exp/slices"
)
const (
RateTmpl = `multiIf(row_number() OVER rate_window = 1, nan, (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) / (ts - lagInFrame(ts, 1) OVER rate_window))`
RateWithoutNegative = `If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))`
IncreaseWithoutNegative = `If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, per_series_value, ((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window)) * (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))`
IncreaseTmpl = `multiIf(row_number() OVER rate_window = 1, nan, (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0, per_series_value, per_series_value - lagInFrame(per_series_value, 1) OVER rate_window)`
RateWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, IF((%s - lagInFrame(%s, 1, 0) OVER rate_window) < 0, %s / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window), (%s - lagInFrame(%s, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))) AS per_series_value`
IncreaseWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, IF((%s - lagInFrame(%s, 1, 0) OVER rate_window) < 0, %s, ((%s - lagInFrame(%s, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window)) * (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))) AS per_series_value`
OthersMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, %s) AS per_series_value`
RateWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, multiIf(row_number() OVER rate_window = 1, nan, (%s - lagInFrame(%s, 1) OVER rate_window) < 0, %s / (ts - lagInFrame(ts, 1) OVER rate_window), (%s - lagInFrame(%s, 1) OVER rate_window) / (ts - lagInFrame(ts, 1) OVER rate_window))) AS per_series_value`
RateWithInterpolation = `
CASE
WHEN row_number() OVER rate_window = 1 THEN
-- First row: try to interpolate using next value
CASE
WHEN leadInFrame(per_series_value, 1) OVER rate_window IS NOT NULL THEN
-- Assume linear growth to next point
(leadInFrame(per_series_value, 1) OVER rate_window - per_series_value) /
(leadInFrame(ts, 1) OVER rate_window - ts)
ELSE
0 -- No next value either, can't interpolate
END
WHEN (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0 THEN
-- Counter reset detected
per_series_value / (ts - lagInFrame(ts, 1) OVER rate_window)
ELSE
-- Normal case: calculate rate
(per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) /
(ts - lagInFrame(ts, 1) OVER rate_window)
END`
IncreaseWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, multiIf(row_number() OVER rate_window = 1, nan, (%s - lagInFrame(%s, 1) OVER rate_window) < 0, %s, (%s - lagInFrame(%s, 1) OVER rate_window))) AS per_series_value`
OthersMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, %s) AS per_series_value`
IncreaseWithInterpolation = `
CASE
WHEN row_number() OVER rate_window = 1 THEN
-- First row: try to interpolate using next value
CASE
WHEN leadInFrame(per_series_value, 1) OVER rate_window IS NOT NULL THEN
-- Calculate the interpolated increase for this interval
((leadInFrame(per_series_value, 1) OVER rate_window - per_series_value) /
(leadInFrame(ts, 1) OVER rate_window - ts)) *
(leadInFrame(ts, 1) OVER rate_window - ts)
ELSE
0 -- No next value either, can't interpolate
END
WHEN (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0 THEN
-- Counter reset detected: the increase is the current value
per_series_value
ELSE
-- Normal case: calculate increase
(per_series_value - lagInFrame(per_series_value, 1) OVER rate_window)
END`
)
type MetricQueryStatementBuilder struct {
@@ -107,6 +147,54 @@ func (b *MetricQueryStatementBuilder) Build(
return b.buildPipelineStatement(ctx, start, end, query, keys, variables)
}
// Fastpath (no fingerprint grouping)
// canShortCircuitDelta returns true if we can use the optimized query
// for the given query
// This is used to avoid the group by fingerprint thus improving the performance
// for certain queries
// cases where we can short circuit:
// 1. time aggregation = (rate|increase) and space aggregation = sum
// - rate = sum(value)/step, increase = sum(value) - sum of sums is same as sum of all values
//
// 2. time aggregation = sum and space aggregation = sum
// - sum of sums is same as sum of all values
//
// 3. time aggregation = min and space aggregation = min
// - min of mins is same as min of all values
//
// 4. time aggregation = max and space aggregation = max
// - max of maxs is same as max of all values
//
// 5. special case exphist, there is no need for per series/fingerprint aggregation
// we can directly use the quantilesDDMerge function
//
// all of this is true only for delta metrics
func (b *MetricQueryStatementBuilder) CanShortCircuitDelta(q qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation]) bool {
if q.Aggregations[0].Temporality != metrictypes.Delta {
return false
}
ta := q.Aggregations[0].TimeAggregation
sa := q.Aggregations[0].SpaceAggregation
if (ta == metrictypes.TimeAggregationRate || ta == metrictypes.TimeAggregationIncrease) && sa == metrictypes.SpaceAggregationSum {
return true
}
if ta == metrictypes.TimeAggregationSum && sa == metrictypes.SpaceAggregationSum {
return true
}
if ta == metrictypes.TimeAggregationMin && sa == metrictypes.SpaceAggregationMin {
return true
}
if ta == metrictypes.TimeAggregationMax && sa == metrictypes.SpaceAggregationMax {
return true
}
if q.Aggregations[0].Type == metrictypes.ExpHistogramType && sa.IsPercentile() {
return true
}
return false
}
func (b *MetricQueryStatementBuilder) buildPipelineStatement(
ctx context.Context,
start, end uint64,
@@ -168,11 +256,10 @@ func (b *MetricQueryStatementBuilder) buildPipelineStatement(
return nil, err
}
if qbtypes.CanShortCircuitDelta(query.Aggregations[0]) {
if b.CanShortCircuitDelta(query) {
// spatial_aggregation_cte directly for certain delta queries
if frag, args, err := b.buildTemporalAggDeltaFastPath(start, end, query, timeSeriesCTE, timeSeriesCTEArgs); err != nil {
return nil, err
} else if frag != "" {
frag, args := b.buildTemporalAggDeltaFastPath(start, end, query, timeSeriesCTE, timeSeriesCTEArgs)
if frag != "" {
cteFragments = append(cteFragments, frag)
cteArgs = append(cteArgs, args)
}
@@ -186,9 +273,8 @@ func (b *MetricQueryStatementBuilder) buildPipelineStatement(
}
// spatial_aggregation_cte
if frag, args, err := b.buildSpatialAggregationCTE(ctx, start, end, query, keys); err != nil {
return nil, err
} else if frag != "" {
frag, args := b.buildSpatialAggregationCTE(ctx, start, end, query, keys)
if frag != "" {
cteFragments = append(cteFragments, frag)
cteArgs = append(cteArgs, args)
}
@@ -208,7 +294,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDeltaFastPath(
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
timeSeriesCTE string,
timeSeriesCTEArgs []any,
) (string, []any, error) {
) (string, []any) {
stepSec := int64(query.StepInterval.Seconds())
sb := sqlbuilder.NewSelectBuilder()
@@ -221,15 +307,11 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDeltaFastPath(
sb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
aggCol, err := AggregationColumnForSamplesTable(
aggCol := AggregationColumnForSamplesTable(
start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality,
query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints,
)
if err != nil {
return "", nil, err
}
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
// TODO(srikanthccv): should it be step interval or use [start_time_unix_nano](https://github.com/open-telemetry/opentelemetry-proto/blob/d3fb76d70deb0874692bd0ebe03148580d85f3bb/opentelemetry/proto/metrics/v1/metrics.proto#L400C11-L400C31)?
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
}
@@ -252,7 +334,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDeltaFastPath(
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
q, args := sb.BuildWithFlavor(sqlbuilder.ClickHouse, timeSeriesCTEArgs...)
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args, nil
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args
}
func (b *MetricQueryStatementBuilder) buildTimeSeriesCTE(
@@ -355,12 +437,8 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDelta(
sb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
// TODO(srikanthccv): should it be step interval or use [start_time_unix_nano](https://github.com/open-telemetry/opentelemetry-proto/blob/d3fb76d70deb0874692bd0ebe03148580d85f3bb/opentelemetry/proto/metrics/v1/metrics.proto#L400C11-L400C31)?
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
}
@@ -383,7 +461,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDelta(
}
func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
_ context.Context,
ctx context.Context,
start, end uint64,
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
timeSeriesCTE string,
@@ -401,10 +479,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
baseSb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
baseSb.SelectMore(fmt.Sprintf("%s AS per_series_value", aggCol))
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
@@ -421,25 +496,36 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
innerQuery, innerArgs := baseSb.BuildWithFlavor(sqlbuilder.ClickHouse, timeSeriesCTEArgs...)
// ! TODO (balanikaran) Get OrgID via function parameter instead of valuer.GenerateUUID()
interpolationEnabled := b.flagger.BooleanOrEmpty(ctx, flagger.FeatureInterpolationEnabled, featuretypes.NewFlaggerEvaluationContext(valuer.GenerateUUID()))
switch query.Aggregations[0].TimeAggregation {
case metrictypes.TimeAggregationRate:
rateExpr := fmt.Sprintf(RateWithoutNegative, start, start)
if interpolationEnabled {
rateExpr = RateWithInterpolation
}
wrapped := sqlbuilder.NewSelectBuilder()
wrapped.Select("ts")
for _, g := range query.GroupBy {
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", RateTmpl))
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", rateExpr))
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
case metrictypes.TimeAggregationIncrease:
incExpr := fmt.Sprintf(IncreaseWithoutNegative, start, start)
if interpolationEnabled {
incExpr = IncreaseWithInterpolation
}
wrapped := sqlbuilder.NewSelectBuilder()
wrapped.Select("ts")
for _, g := range query.GroupBy {
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", IncreaseTmpl))
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", incExpr))
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
@@ -448,6 +534,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
}
}
// because RateInterpolation is not enabled anywhere due to some gaps in the logic wrt cache handling, it hasn't been considered for the multi temporality
func (b *MetricQueryStatementBuilder) buildTemporalAggForMultipleTemporalities(
_ context.Context,
start, end uint64,
@@ -466,32 +553,18 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggForMultipleTemporalities(
sb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
aggForDeltaTemporality, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Delta, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
aggForCumulativeTemporality, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Cumulative, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
aggForDeltaTemporality := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Delta, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggForCumulativeTemporality := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Cumulative, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
aggForDeltaTemporality = fmt.Sprintf("%s/%d", aggForDeltaTemporality, stepSec)
}
switch query.Aggregations[0].TimeAggregation {
case metrictypes.TimeAggregationRate:
rateExpr := fmt.Sprintf(RateWithoutNegativeMultiTemporality,
aggForDeltaTemporality,
aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality,
aggForCumulativeTemporality, aggForCumulativeTemporality,
)
rateExpr := fmt.Sprintf(RateWithoutNegativeMultiTemporality, aggForDeltaTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, start, aggForCumulativeTemporality, aggForCumulativeTemporality, start)
sb.SelectMore(rateExpr)
case metrictypes.TimeAggregationIncrease:
increaseExpr := fmt.Sprintf(IncreaseWithoutNegativeMultiTemporality,
aggForDeltaTemporality,
aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality,
aggForCumulativeTemporality, aggForCumulativeTemporality,
)
increaseExpr := fmt.Sprintf(IncreaseWithoutNegativeMultiTemporality, aggForDeltaTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, start, start)
sb.SelectMore(increaseExpr)
default:
expr := fmt.Sprintf(OthersMultiTemporality, aggForDeltaTemporality, aggForCumulativeTemporality)
@@ -519,14 +592,7 @@ func (b *MetricQueryStatementBuilder) buildSpatialAggregationCTE(
_ uint64,
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
_ map[string][]*telemetrytypes.TelemetryFieldKey,
) (string, []any, error) {
if query.Aggregations[0].SpaceAggregation.IsZero() {
return "", nil, errors.Newf(
errors.TypeInvalidInput,
errors.CodeInvalidInput,
"invalid space aggregation, should be one of the following: [`sum`, `avg`, `min`, `max`, `count`, `p50`, `p75`, `p90`, `p95`, `p99`]",
)
}
) (string, []any) {
sb := sqlbuilder.NewSelectBuilder()
sb.Select("ts")
@@ -543,7 +609,7 @@ func (b *MetricQueryStatementBuilder) buildSpatialAggregationCTE(
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
q, args := sb.BuildWithFlavor(sqlbuilder.ClickHouse)
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args, nil
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args
}
func (b *MetricQueryStatementBuilder) BuildFinalSelect(
@@ -575,7 +641,9 @@ func (b *MetricQueryStatementBuilder) BuildFinalSelect(
quantile,
))
sb.From("__spatial_aggregation_cte")
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
for _, g := range query.GroupBy {
sb.GroupBy(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
sb.GroupBy("ts")
if query.Having != nil && query.Having.Expression != "" {
rewriter := querybuilder.NewHavingExpressionRewriter()
@@ -591,8 +659,6 @@ func (b *MetricQueryStatementBuilder) BuildFinalSelect(
sb.Where(rewrittenExpr)
}
}
sb.OrderBy(querybuilder.GroupByKeys(query.GroupBy)...)
sb.OrderBy("ts")
q, a := sb.BuildWithFlavor(sqlbuilder.ClickHouse)
return &qbtypes.Statement{Query: combined + q, Args: append(args, a...)}, nil

View File

@@ -3,7 +3,6 @@ package telemetrymetrics
import (
"time"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/types/metrictypes"
)
@@ -169,7 +168,7 @@ func AggregationColumnForSamplesTable(
temporality metrictypes.Temporality,
timeAggregation metrictypes.TimeAggregation,
tableHints *metrictypes.MetricTableHints,
) (string, error) {
) string {
tableName := WhichSamplesTableToUse(start, end, metricType, timeAggregation, tableHints)
var aggregationColumn string
switch temporality {
@@ -299,12 +298,5 @@ func AggregationColumnForSamplesTable(
}
}
}
if aggregationColumn == "" {
return "", errors.Newf(
errors.TypeInvalidInput,
errors.CodeInvalidInput,
"invalid time aggregation, should be one of the following: [`latest`, `sum`, `avg`, `min`, `max`, `count`, `rate`, `increase`]",
)
}
return aggregationColumn, nil
return aggregationColumn
}

View File

@@ -35,7 +35,13 @@ func (c *conditionBuilder) conditionFor(
sb *sqlbuilder.SelectBuilder,
) (string, error) {
if operator.IsStringSearchOperator() {
switch operator {
case qbtypes.FilterOperatorContains,
qbtypes.FilterOperatorNotContains,
qbtypes.FilterOperatorILike,
qbtypes.FilterOperatorNotILike,
qbtypes.FilterOperatorLike,
qbtypes.FilterOperatorNotLike:
value = querybuilder.FormatValueForContains(value)
}

View File

@@ -1,102 +0,0 @@
package transition
import (
"fmt"
v3 "github.com/SigNoz/signoz/pkg/query-service/model/v3"
qbtypes "github.com/SigNoz/signoz/pkg/types/querybuildertypes/querybuildertypesv5"
)
// ConvertV5TimeSeriesDataToV4Result converts v5 TimeSeriesData to v4 Result
func ConvertV5TimeSeriesDataToV4Result(v5Data *qbtypes.TimeSeriesData) *v3.Result {
if v5Data == nil {
return nil
}
result := &v3.Result{
QueryName: v5Data.QueryName,
Series: make([]*v3.Series, 0),
}
toV4Series := func(ts *qbtypes.TimeSeries) *v3.Series {
series := &v3.Series{
Labels: make(map[string]string),
LabelsArray: make([]map[string]string, 0),
Points: make([]v3.Point, 0, len(ts.Values)),
}
for _, label := range ts.Labels {
valueStr := fmt.Sprintf("%v", label.Value)
series.Labels[label.Key.Name] = valueStr
}
if len(series.Labels) > 0 {
series.LabelsArray = append(series.LabelsArray, series.Labels)
}
for _, tsValue := range ts.Values {
if tsValue.Partial {
continue
}
point := v3.Point{
Timestamp: tsValue.Timestamp,
Value: tsValue.Value,
}
series.Points = append(series.Points, point)
}
return series
}
for _, aggBucket := range v5Data.Aggregations {
for _, ts := range aggBucket.Series {
result.Series = append(result.Series, toV4Series(ts))
}
if len(aggBucket.AnomalyScores) != 0 {
result.AnomalyScores = make([]*v3.Series, 0)
for _, ts := range aggBucket.AnomalyScores {
result.AnomalyScores = append(result.AnomalyScores, toV4Series(ts))
}
}
if len(aggBucket.PredictedSeries) != 0 {
result.PredictedSeries = make([]*v3.Series, 0)
for _, ts := range aggBucket.PredictedSeries {
result.PredictedSeries = append(result.PredictedSeries, toV4Series(ts))
}
}
if len(aggBucket.LowerBoundSeries) != 0 {
result.LowerBoundSeries = make([]*v3.Series, 0)
for _, ts := range aggBucket.LowerBoundSeries {
result.LowerBoundSeries = append(result.LowerBoundSeries, toV4Series(ts))
}
}
if len(aggBucket.UpperBoundSeries) != 0 {
result.UpperBoundSeries = make([]*v3.Series, 0)
for _, ts := range aggBucket.UpperBoundSeries {
result.UpperBoundSeries = append(result.UpperBoundSeries, toV4Series(ts))
}
}
}
return result
}
// ConvertV5TimeSeriesDataSliceToV4Results converts a slice of v5 TimeSeriesData to v4 QueryRangeResponse
func ConvertV5TimeSeriesDataSliceToV4Results(v5DataSlice []*qbtypes.TimeSeriesData) *v3.QueryRangeResponse {
response := &v3.QueryRangeResponse{
ResultType: "matrix", // Time series data is typically "matrix" type
Result: make([]*v3.Result, 0, len(v5DataSlice)),
}
for _, v5Data := range v5DataSlice {
if result := ConvertV5TimeSeriesDataToV4Result(v5Data); result != nil {
response.Result = append(response.Result, result)
}
}
return response
}

View File

@@ -152,9 +152,7 @@ func (f FilterOperator) IsStringSearchOperator() bool {
FilterOperatorILike,
FilterOperatorNotILike,
FilterOperatorLike,
FilterOperatorNotLike,
FilterOperatorRegexp,
FilterOperatorNotRegexp:
FilterOperatorNotLike:
return true
default:
return false

View File

@@ -3,7 +3,6 @@ package querybuildertypesv5
import (
"fmt"
"github.com/SigNoz/signoz/pkg/types/metrictypes"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
)
@@ -175,54 +174,3 @@ func (q *QueryBuilderQuery[T]) Normalize() {
}
}
// Fastpath (no fingerprint grouping)
// canShortCircuitDelta returns true if we can use the optimized query
// for the given query
// This is used to avoid the group by fingerprint thus improving the performance
// for certain queries
// cases where we can short circuit:
// 1. time aggregation = (rate|increase) and space aggregation = sum
// - rate = sum(value)/step, increase = sum(value) - sum of sums is same as sum of all values
//
// 2. time aggregation = sum and space aggregation = sum
// - sum of sums is same as sum of all values
//
// 3. time aggregation = min and space aggregation = min
// - min of mins is same as min of all values
//
// 4. time aggregation = max and space aggregation = max
// - max of maxs is same as max of all values
//
// 5. special case exphist, there is no need for per series/fingerprint aggregation
// we can directly use the quantilesDDMerge function
//
// all of this is true only for delta metrics
func CanShortCircuitDelta(metricAgg MetricAggregation) bool {
if metricAgg.Temporality != metrictypes.Delta {
return false
}
ta := metricAgg.TimeAggregation
sa := metricAgg.SpaceAggregation
if (ta == metrictypes.TimeAggregationRate || ta == metrictypes.TimeAggregationIncrease) &&
sa == metrictypes.SpaceAggregationSum {
return true
}
if ta == metrictypes.TimeAggregationSum && sa == metrictypes.SpaceAggregationSum {
return true
}
if ta == metrictypes.TimeAggregationMin && sa == metrictypes.SpaceAggregationMin {
return true
}
if ta == metrictypes.TimeAggregationMax && sa == metrictypes.SpaceAggregationMax {
return true
}
if metricAgg.Type == metrictypes.ExpHistogramType && sa.IsPercentile() {
return true
}
return false
}

View File

@@ -12,7 +12,6 @@ import (
var (
ErrColumnNotFound = errors.Newf(errors.TypeNotFound, errors.CodeNotFound, "field not found")
ErrBetweenValues = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "(not) between operator requires two values")
ErrBetweenValuesType = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "(not) between operator requires two values of the number type")
ErrInValues = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "(not) in operator requires a list of values")
ErrUnsupportedOperator = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "unsupported operator")
)

View File

@@ -76,6 +76,33 @@ type TimeSeries struct {
Values []*TimeSeriesValue `json:"values"`
}
// LabelsMap converts the label slice to a map[string]string for use in
// alert evaluation helpers that operate on flat label maps.
func (ts *TimeSeries) LabelsMap() map[string]string {
if ts == nil {
return nil
}
m := make(map[string]string, len(ts.Labels))
for _, l := range ts.Labels {
m[l.Key.Name] = fmt.Sprintf("%v", l.Value)
}
return m
}
// NonPartialValues returns only the values where Partial is false.
func (ts *TimeSeries) NonPartialValues() []*TimeSeriesValue {
if ts == nil {
return nil
}
result := make([]*TimeSeriesValue, 0, len(ts.Values))
for _, v := range ts.Values {
if !v.Partial {
result = append(result, v)
}
}
return result
}
type Label struct {
Key telemetrytypes.TelemetryFieldKey `json:"key"`
Value any `json:"value"`

View File

@@ -179,6 +179,14 @@ func (q *QueryBuilderQuery[T]) validateAggregations() error {
aggId,
)
}
// Validate metric-specific aggregations
if err := validateMetricAggregation(v); err != nil {
aggId := fmt.Sprintf("aggregation #%d", i+1)
if q.Name != "" {
aggId = fmt.Sprintf("aggregation #%d in query '%s'", i+1, q.Name)
}
return wrapValidationError(err, aggId, "invalid metric %s: %s")
}
case TraceAggregation:
if v.Expression == "" {
aggId := fmt.Sprintf("aggregation #%d", i+1)
@@ -795,3 +803,85 @@ func validateQueryEnvelope(envelope QueryEnvelope, requestType RequestType) erro
)
}
}
// validateMetricAggregation validates metric-specific aggregation parameters
func validateMetricAggregation(agg MetricAggregation) error {
// we can't decide anything here without known temporality
if agg.Temporality == metrictypes.Unknown {
return nil
}
// Validate that rate/increase are only used with appropriate temporalities
if agg.TimeAggregation == metrictypes.TimeAggregationRate || agg.TimeAggregation == metrictypes.TimeAggregationIncrease {
// For gauge metrics (Unspecified temporality), rate/increase doesn't make sense
if agg.Temporality == metrictypes.Unspecified {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"rate/increase aggregation cannot be used with gauge metrics (unspecified temporality)",
)
}
}
// Validate percentile aggregations are only used with histogram types
if agg.SpaceAggregation.IsPercentile() {
if agg.Type != metrictypes.HistogramType && agg.Type != metrictypes.ExpHistogramType && agg.Type != metrictypes.SummaryType {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"percentile aggregation can only be used with histogram or summary metric types",
)
}
}
// Validate time aggregation values
validTimeAggregations := []metrictypes.TimeAggregation{
metrictypes.TimeAggregationUnspecified,
metrictypes.TimeAggregationLatest,
metrictypes.TimeAggregationSum,
metrictypes.TimeAggregationAvg,
metrictypes.TimeAggregationMin,
metrictypes.TimeAggregationMax,
metrictypes.TimeAggregationCount,
metrictypes.TimeAggregationCountDistinct,
metrictypes.TimeAggregationRate,
metrictypes.TimeAggregationIncrease,
}
validTimeAgg := slices.Contains(validTimeAggregations, agg.TimeAggregation)
if !validTimeAgg {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"invalid time aggregation: %s",
agg.TimeAggregation.StringValue(),
).WithAdditional(
"Valid time aggregations: latest, sum, avg, min, max, count, count_distinct, rate, increase",
)
}
// Validate space aggregation values
validSpaceAggregations := []metrictypes.SpaceAggregation{
metrictypes.SpaceAggregationUnspecified,
metrictypes.SpaceAggregationSum,
metrictypes.SpaceAggregationAvg,
metrictypes.SpaceAggregationMin,
metrictypes.SpaceAggregationMax,
metrictypes.SpaceAggregationCount,
metrictypes.SpaceAggregationPercentile50,
metrictypes.SpaceAggregationPercentile75,
metrictypes.SpaceAggregationPercentile90,
metrictypes.SpaceAggregationPercentile95,
metrictypes.SpaceAggregationPercentile99,
}
validSpaceAgg := slices.Contains(validSpaceAggregations, agg.SpaceAggregation)
if !validSpaceAgg {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"invalid space aggregation: %s",
agg.SpaceAggregation.StringValue(),
).WithAdditional(
"Valid space aggregations: sum, avg, min, max, count, p50, p75, p90, p95, p99",
)
}
return nil
}

View File

@@ -203,11 +203,11 @@ func (rc *RuleCondition) IsValid() bool {
}
// ShouldEval checks if the further series should be evaluated at all for alerts.
func (rc *RuleCondition) ShouldEval(series *v3.Series) bool {
func (rc *RuleCondition) ShouldEval(series *qbtypes.TimeSeries) bool {
if rc == nil {
return true
}
return !rc.RequireMinPoints || len(series.Points) >= rc.RequiredNumPoints
return !rc.RequireMinPoints || len(series.NonPartialValues()) >= rc.RequiredNumPoints
}
// QueryType is a shorthand method to get query type

View File

@@ -355,6 +355,14 @@ func (r *PostableRule) validate() error {
errs = append(errs, signozError.NewInvalidInputf(signozError.CodeInvalidInput, "composite query is required"))
}
if r.Version != "" && r.Version != "v5" {
errs = append(errs, signozError.NewInvalidInputf(signozError.CodeInvalidInput, "only version v5 is supported, got %q", r.Version))
}
if r.Version == "v5" && r.RuleCondition.CompositeQuery != nil && len(r.RuleCondition.CompositeQuery.Queries) == 0 {
errs = append(errs, signozError.NewInvalidInputf(signozError.CodeInvalidInput, "queries envelope is required in compositeQuery"))
}
if isAllQueriesDisabled(r.RuleCondition.CompositeQuery) {
errs = append(errs, signozError.NewInvalidInputf(signozError.CodeInvalidInput, "all queries are disabled in rule condition"))
}

View File

@@ -8,6 +8,8 @@ import (
"github.com/stretchr/testify/assert"
v3 "github.com/SigNoz/signoz/pkg/query-service/model/v3"
qbtypes "github.com/SigNoz/signoz/pkg/types/querybuildertypes/querybuildertypesv5"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
)
func TestIsAllQueriesDisabled(t *testing.T) {
@@ -621,9 +623,9 @@ func TestParseIntoRuleThresholdGeneration(t *testing.T) {
}
// Test that threshold can evaluate properly
vector, err := threshold.Eval(v3.Series{
Points: []v3.Point{{Value: 0.15, Timestamp: 1000}}, // 150ms in seconds
Labels: map[string]string{"test": "label"},
vector, err := threshold.Eval(qbtypes.TimeSeries{
Values: []*qbtypes.TimeSeriesValue{{Value: 0.15, Timestamp: 1000}}, // 150ms in seconds
Labels: []*qbtypes.Label{{Key: telemetrytypes.TelemetryFieldKey{Name: "test"}, Value: "label"}},
}, "", EvalData{})
if err != nil {
t.Fatalf("Unexpected error in shouldAlert: %v", err)
@@ -698,9 +700,9 @@ func TestParseIntoRuleMultipleThresholds(t *testing.T) {
}
// Test with a value that should trigger both WARNING and CRITICAL thresholds
vector, err := threshold.Eval(v3.Series{
Points: []v3.Point{{Value: 95.0, Timestamp: 1000}}, // 95% CPU usage
Labels: map[string]string{"service": "test"},
vector, err := threshold.Eval(qbtypes.TimeSeries{
Values: []*qbtypes.TimeSeriesValue{{Value: 95.0, Timestamp: 1000}}, // 95% CPU usage
Labels: []*qbtypes.Label{{Key: telemetrytypes.TelemetryFieldKey{Name: "service"}, Value: "test"}},
}, "", EvalData{})
if err != nil {
t.Fatalf("Unexpected error in shouldAlert: %v", err)
@@ -708,9 +710,9 @@ func TestParseIntoRuleMultipleThresholds(t *testing.T) {
assert.Equal(t, 2, len(vector))
vector, err = threshold.Eval(v3.Series{
Points: []v3.Point{{Value: 75.0, Timestamp: 1000}}, // 75% CPU usage
Labels: map[string]string{"service": "test"},
vector, err = threshold.Eval(qbtypes.TimeSeries{
Values: []*qbtypes.TimeSeriesValue{{Value: 75.0, Timestamp: 1000}}, // 75% CPU usage
Labels: []*qbtypes.Label{{Key: telemetrytypes.TelemetryFieldKey{Name: "service"}, Value: "test"}},
}, "", EvalData{})
if err != nil {
t.Fatalf("Unexpected error in shouldAlert: %v", err)
@@ -723,7 +725,7 @@ func TestAnomalyNegationEval(t *testing.T) {
tests := []struct {
name string
ruleJSON []byte
series v3.Series
series qbtypes.TimeSeries
shouldAlert bool
expectedValue float64
}{
@@ -751,9 +753,9 @@ func TestAnomalyNegationEval(t *testing.T) {
"selectedQuery": "A"
}
}`),
series: v3.Series{
Labels: map[string]string{"host": "server1"},
Points: []v3.Point{
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{{Key: telemetrytypes.TelemetryFieldKey{Name: "host"}, Value: "server1"}},
Values: []*qbtypes.TimeSeriesValue{
{Timestamp: 1000, Value: -2.1}, // below & at least once, should alert
{Timestamp: 2000, Value: -2.3},
},
@@ -785,9 +787,9 @@ func TestAnomalyNegationEval(t *testing.T) {
"selectedQuery": "A"
}
}`), // below & at least once, no value below -2.0
series: v3.Series{
Labels: map[string]string{"host": "server1"},
Points: []v3.Point{
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{{Key: telemetrytypes.TelemetryFieldKey{Name: "host"}, Value: "server1"}},
Values: []*qbtypes.TimeSeriesValue{
{Timestamp: 1000, Value: -1.9},
{Timestamp: 2000, Value: -1.8},
},
@@ -818,9 +820,9 @@ func TestAnomalyNegationEval(t *testing.T) {
"selectedQuery": "A"
}
}`), // above & at least once, should alert
series: v3.Series{
Labels: map[string]string{"host": "server1"},
Points: []v3.Point{
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{{Key: telemetrytypes.TelemetryFieldKey{Name: "host"}, Value: "server1"}},
Values: []*qbtypes.TimeSeriesValue{
{Timestamp: 1000, Value: 2.1}, // above 2.0, should alert
{Timestamp: 2000, Value: 2.2},
},
@@ -852,9 +854,9 @@ func TestAnomalyNegationEval(t *testing.T) {
"selectedQuery": "A"
}
}`),
series: v3.Series{
Labels: map[string]string{"host": "server1"},
Points: []v3.Point{
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{{Key: telemetrytypes.TelemetryFieldKey{Name: "host"}, Value: "server1"}},
Values: []*qbtypes.TimeSeriesValue{
{Timestamp: 1000, Value: 1.1},
{Timestamp: 2000, Value: 1.2},
},
@@ -885,9 +887,9 @@ func TestAnomalyNegationEval(t *testing.T) {
"selectedQuery": "A"
}
}`), // below and all the times
series: v3.Series{
Labels: map[string]string{"host": "server1"},
Points: []v3.Point{
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{{Key: telemetrytypes.TelemetryFieldKey{Name: "host"}, Value: "server1"}},
Values: []*qbtypes.TimeSeriesValue{
{Timestamp: 1000, Value: -2.1}, // all below -2
{Timestamp: 2000, Value: -2.2},
{Timestamp: 3000, Value: -2.5},
@@ -920,9 +922,9 @@ func TestAnomalyNegationEval(t *testing.T) {
"selectedQuery": "A"
}
}`),
series: v3.Series{
Labels: map[string]string{"host": "server1"},
Points: []v3.Point{
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{{Key: telemetrytypes.TelemetryFieldKey{Name: "host"}, Value: "server1"}},
Values: []*qbtypes.TimeSeriesValue{
{Timestamp: 1000, Value: -3.0},
{Timestamp: 2000, Value: -1.0}, // above -2, breaks condition
{Timestamp: 3000, Value: -2.5},
@@ -954,10 +956,10 @@ func TestAnomalyNegationEval(t *testing.T) {
"selectedQuery": "A"
}
}`),
series: v3.Series{
Labels: map[string]string{"host": "server1"},
Points: []v3.Point{
{Timestamp: 1000, Value: -8.0}, // abs(8) >= 7, alert
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{{Key: telemetrytypes.TelemetryFieldKey{Name: "host"}, Value: "server1"}},
Values: []*qbtypes.TimeSeriesValue{
{Timestamp: 1000, Value: -8.0}, // abs(-8) >= 7, alert
{Timestamp: 2000, Value: 5.0},
},
},
@@ -988,9 +990,9 @@ func TestAnomalyNegationEval(t *testing.T) {
"selectedQuery": "A"
}
}`),
series: v3.Series{
Labels: map[string]string{"host": "server1"},
Points: []v3.Point{
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{{Key: telemetrytypes.TelemetryFieldKey{Name: "host"}, Value: "server1"}},
Values: []*qbtypes.TimeSeriesValue{
{Timestamp: 1000, Value: 80.0}, // below 90, should alert
{Timestamp: 2000, Value: 85.0},
},
@@ -1022,9 +1024,9 @@ func TestAnomalyNegationEval(t *testing.T) {
"selectedQuery": "A"
}
}`),
series: v3.Series{
Labels: map[string]string{"host": "server1"},
Points: []v3.Point{
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{{Key: telemetrytypes.TelemetryFieldKey{Name: "host"}, Value: "server1"}},
Values: []*qbtypes.TimeSeriesValue{
{Timestamp: 1000, Value: 60.0}, // below, should alert
{Timestamp: 2000, Value: 90.0},
},

View File

@@ -8,8 +8,8 @@ import (
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/query-service/converter"
v3 "github.com/SigNoz/signoz/pkg/query-service/model/v3"
"github.com/SigNoz/signoz/pkg/query-service/utils/labels"
qbtypes "github.com/SigNoz/signoz/pkg/types/querybuildertypes/querybuildertypesv5"
"github.com/SigNoz/signoz/pkg/valuer"
)
@@ -83,7 +83,7 @@ func (eval EvalData) HasActiveAlert(sampleLabelFp uint64) bool {
type RuleThreshold interface {
// Eval runs the given series through the threshold rules
// using the given EvalData and returns the matching series
Eval(series v3.Series, unit string, evalData EvalData) (Vector, error)
Eval(series qbtypes.TimeSeries, unit string, evalData EvalData) (Vector, error)
GetRuleReceivers() []RuleReceivers
}
@@ -122,10 +122,11 @@ func (r BasicRuleThresholds) Validate() error {
return errors.Join(errs...)
}
func (r BasicRuleThresholds) Eval(series v3.Series, unit string, evalData EvalData) (Vector, error) {
func (r BasicRuleThresholds) Eval(series qbtypes.TimeSeries, unit string, evalData EvalData) (Vector, error) {
var resultVector Vector
thresholds := []BasicRuleThreshold(r)
sortThresholds(thresholds)
seriesLabels := series.LabelsMap()
for _, threshold := range thresholds {
smpl, shouldAlert := threshold.shouldAlert(series, unit)
if shouldAlert {
@@ -137,15 +138,15 @@ func (r BasicRuleThresholds) Eval(series v3.Series, unit string, evalData EvalDa
resultVector = append(resultVector, smpl)
continue
} else if evalData.SendUnmatched {
// Sanitise the series points to remove any NaN or Inf values
series.Points = removeGroupinSetPoints(series)
if len(series.Points) == 0 {
// Sanitise the series values to remove any NaN, Inf, or partial values
values := filterValidValues(series.Values)
if len(values) == 0 {
continue
}
// prepare the sample with the first point of the series
// prepare the sample with the first value of the series
smpl := Sample{
Point: Point{T: series.Points[0].Timestamp, V: series.Points[0].Value},
Metric: PrepareSampleLabelsForRule(series.Labels, threshold.Name),
Point: Point{T: values[0].Timestamp, V: values[0].Value},
Metric: PrepareSampleLabelsForRule(seriesLabels, threshold.Name),
Target: *threshold.TargetValue,
TargetUnit: threshold.TargetUnit,
}
@@ -160,7 +161,7 @@ func (r BasicRuleThresholds) Eval(series v3.Series, unit string, evalData EvalDa
if threshold.RecoveryTarget == nil {
continue
}
sampleLabels := PrepareSampleLabelsForRule(series.Labels, threshold.Name)
sampleLabels := PrepareSampleLabelsForRule(seriesLabels, threshold.Name)
alertHash := sampleLabels.Hash()
// check if alert is active and then check if recovery threshold matches
if evalData.HasActiveAlert(alertHash) {
@@ -255,18 +256,23 @@ func (b BasicRuleThreshold) Validate() error {
return errors.Join(errs...)
}
func (b BasicRuleThreshold) matchesRecoveryThreshold(series v3.Series, ruleUnit string) (Sample, bool) {
func (b BasicRuleThreshold) matchesRecoveryThreshold(series qbtypes.TimeSeries, ruleUnit string) (Sample, bool) {
return b.shouldAlertWithTarget(series, b.recoveryTarget(ruleUnit))
}
func (b BasicRuleThreshold) shouldAlert(series v3.Series, ruleUnit string) (Sample, bool) {
func (b BasicRuleThreshold) shouldAlert(series qbtypes.TimeSeries, ruleUnit string) (Sample, bool) {
return b.shouldAlertWithTarget(series, b.target(ruleUnit))
}
func removeGroupinSetPoints(series v3.Series) []v3.Point {
var result []v3.Point
for _, s := range series.Points {
if s.Timestamp >= 0 && !math.IsNaN(s.Value) && !math.IsInf(s.Value, 0) {
result = append(result, s)
// filterValidValues returns only the values that are valid for alert evaluation:
// non-partial, non-NaN, non-Inf, and with non-negative timestamps.
func filterValidValues(values []*qbtypes.TimeSeriesValue) []*qbtypes.TimeSeriesValue {
var result []*qbtypes.TimeSeriesValue
for _, v := range values {
if v.Partial {
continue
}
if v.Timestamp >= 0 && !math.IsNaN(v.Value) && !math.IsInf(v.Value, 0) {
result = append(result, v)
}
}
return result
@@ -284,15 +290,15 @@ func PrepareSampleLabelsForRule(seriesLabels map[string]string, thresholdName st
return lb.Labels()
}
func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float64) (Sample, bool) {
func (b BasicRuleThreshold) shouldAlertWithTarget(series qbtypes.TimeSeries, target float64) (Sample, bool) {
var shouldAlert bool
var alertSmpl Sample
lbls := PrepareSampleLabelsForRule(series.Labels, b.Name)
lbls := PrepareSampleLabelsForRule(series.LabelsMap(), b.Name)
series.Points = removeGroupinSetPoints(series)
values := filterValidValues(series.Values)
// nothing to evaluate
if len(series.Points) == 0 {
if len(values) == 0 {
return alertSmpl, false
}
@@ -300,7 +306,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
case AtleastOnce:
// If any sample matches the condition, the rule is firing.
if b.CompareOp == ValueIsAbove {
for _, smpl := range series.Points {
for _, smpl := range values {
if smpl.Value > target {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
shouldAlert = true
@@ -308,7 +314,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
}
}
} else if b.CompareOp == ValueIsBelow {
for _, smpl := range series.Points {
for _, smpl := range values {
if smpl.Value < target {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
shouldAlert = true
@@ -316,7 +322,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
}
}
} else if b.CompareOp == ValueIsEq {
for _, smpl := range series.Points {
for _, smpl := range values {
if smpl.Value == target {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
shouldAlert = true
@@ -324,7 +330,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
}
}
} else if b.CompareOp == ValueIsNotEq {
for _, smpl := range series.Points {
for _, smpl := range values {
if smpl.Value != target {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
shouldAlert = true
@@ -332,7 +338,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
}
}
} else if b.CompareOp == ValueOutsideBounds {
for _, smpl := range series.Points {
for _, smpl := range values {
if math.Abs(smpl.Value) >= target {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
shouldAlert = true
@@ -345,7 +351,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
shouldAlert = true
alertSmpl = Sample{Point: Point{V: target}, Metric: lbls}
if b.CompareOp == ValueIsAbove {
for _, smpl := range series.Points {
for _, smpl := range values {
if smpl.Value <= target {
shouldAlert = false
break
@@ -354,7 +360,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
// use min value from the series
if shouldAlert {
var minValue float64 = math.Inf(1)
for _, smpl := range series.Points {
for _, smpl := range values {
if smpl.Value < minValue {
minValue = smpl.Value
}
@@ -362,7 +368,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
alertSmpl = Sample{Point: Point{V: minValue}, Metric: lbls}
}
} else if b.CompareOp == ValueIsBelow {
for _, smpl := range series.Points {
for _, smpl := range values {
if smpl.Value >= target {
shouldAlert = false
break
@@ -370,7 +376,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
}
if shouldAlert {
var maxValue float64 = math.Inf(-1)
for _, smpl := range series.Points {
for _, smpl := range values {
if smpl.Value > maxValue {
maxValue = smpl.Value
}
@@ -378,14 +384,14 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
alertSmpl = Sample{Point: Point{V: maxValue}, Metric: lbls}
}
} else if b.CompareOp == ValueIsEq {
for _, smpl := range series.Points {
for _, smpl := range values {
if smpl.Value != target {
shouldAlert = false
break
}
}
} else if b.CompareOp == ValueIsNotEq {
for _, smpl := range series.Points {
for _, smpl := range values {
if smpl.Value == target {
shouldAlert = false
break
@@ -393,7 +399,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
}
// use any non-inf or nan value from the series
if shouldAlert {
for _, smpl := range series.Points {
for _, smpl := range values {
if !math.IsInf(smpl.Value, 0) && !math.IsNaN(smpl.Value) {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
break
@@ -401,7 +407,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
}
}
} else if b.CompareOp == ValueOutsideBounds {
for _, smpl := range series.Points {
for _, smpl := range values {
if math.Abs(smpl.Value) < target {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
shouldAlert = false
@@ -412,7 +418,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
case OnAverage:
// If the average of all samples matches the condition, the rule is firing.
var sum, count float64
for _, smpl := range series.Points {
for _, smpl := range values {
if math.IsNaN(smpl.Value) || math.IsInf(smpl.Value, 0) {
continue
}
@@ -446,7 +452,7 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
// If the sum of all samples matches the condition, the rule is firing.
var sum float64
for _, smpl := range series.Points {
for _, smpl := range values {
if math.IsNaN(smpl.Value) || math.IsInf(smpl.Value, 0) {
continue
}
@@ -477,21 +483,22 @@ func (b BasicRuleThreshold) shouldAlertWithTarget(series v3.Series, target float
case Last:
// If the last sample matches the condition, the rule is firing.
shouldAlert = false
alertSmpl = Sample{Point: Point{V: series.Points[len(series.Points)-1].Value}, Metric: lbls}
lastValue := values[len(values)-1].Value
alertSmpl = Sample{Point: Point{V: lastValue}, Metric: lbls}
if b.CompareOp == ValueIsAbove {
if series.Points[len(series.Points)-1].Value > target {
if lastValue > target {
shouldAlert = true
}
} else if b.CompareOp == ValueIsBelow {
if series.Points[len(series.Points)-1].Value < target {
if lastValue < target {
shouldAlert = true
}
} else if b.CompareOp == ValueIsEq {
if series.Points[len(series.Points)-1].Value == target {
if lastValue == target {
shouldAlert = true
}
} else if b.CompareOp == ValueIsNotEq {
if series.Points[len(series.Points)-1].Value != target {
if lastValue != target {
shouldAlert = true
}
}

View File

@@ -6,16 +6,24 @@ import (
"github.com/stretchr/testify/assert"
v3 "github.com/SigNoz/signoz/pkg/query-service/model/v3"
qbtypes "github.com/SigNoz/signoz/pkg/types/querybuildertypes/querybuildertypesv5"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
)
func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
target := 100.0
makeLabel := func(name, value string) *qbtypes.Label {
return &qbtypes.Label{Key: telemetrytypes.TelemetryFieldKey{Name: name}, Value: value}
}
makeValue := func(value float64, ts int64) *qbtypes.TimeSeriesValue {
return &qbtypes.TimeSeriesValue{Value: value, Timestamp: ts}
}
tests := []struct {
name string
threshold BasicRuleThreshold
series v3.Series
series qbtypes.TimeSeries
ruleUnit string
shouldAlert bool
}{
@@ -28,11 +36,9 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: AtleastOnce,
CompareOp: ValueIsAbove,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 0.15, Timestamp: 1000}, // 150ms in seconds
},
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{makeValue(0.15, 1000)}, // 150ms in seconds
},
ruleUnit: "s",
shouldAlert: true,
@@ -46,11 +52,9 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: AtleastOnce,
CompareOp: ValueIsAbove,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 0.05, Timestamp: 1000}, // 50ms in seconds
},
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{makeValue(0.05, 1000)}, // 50ms in seconds
},
ruleUnit: "s",
shouldAlert: false,
@@ -64,11 +68,9 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: AtleastOnce,
CompareOp: ValueIsAbove,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 150000, Timestamp: 1000}, // 150000ms = 150s
},
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{makeValue(150000, 1000)}, // 150000ms = 150s
},
ruleUnit: "ms",
shouldAlert: true,
@@ -83,11 +85,9 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: AtleastOnce,
CompareOp: ValueIsAbove,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 0.15, Timestamp: 1000}, // 0.15KiB ≈ 153.6 bytes
},
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{makeValue(0.15, 1000)}, // 0.15KiB ≈ 153.6 bytes
},
ruleUnit: "kbytes",
shouldAlert: true,
@@ -101,11 +101,9 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: AtleastOnce,
CompareOp: ValueIsAbove,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 0.15, Timestamp: 1000},
},
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{makeValue(0.15, 1000)},
},
ruleUnit: "mbytes",
shouldAlert: true,
@@ -120,11 +118,9 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: AtleastOnce,
CompareOp: ValueIsBelow,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 0.05, Timestamp: 1000}, // 50ms in seconds
},
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{makeValue(0.05, 1000)}, // 50ms in seconds
},
ruleUnit: "s",
shouldAlert: true,
@@ -138,12 +134,12 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: OnAverage,
CompareOp: ValueIsAbove,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 0.08, Timestamp: 1000}, // 80ms
{Value: 0.12, Timestamp: 2000}, // 120ms
{Value: 0.15, Timestamp: 3000}, // 150ms
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{
makeValue(0.08, 1000), // 80ms
makeValue(0.12, 2000), // 120ms
makeValue(0.15, 3000), // 150ms
},
},
ruleUnit: "s",
@@ -158,12 +154,12 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: InTotal,
CompareOp: ValueIsAbove,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 0.04, Timestamp: 1000}, // 40MB
{Value: 0.05, Timestamp: 2000}, // 50MB
{Value: 0.03, Timestamp: 3000}, // 30MB
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{
makeValue(0.04, 1000), // 40MB
makeValue(0.05, 2000), // 50MB
makeValue(0.03, 3000), // 30MB
},
},
ruleUnit: "decgbytes",
@@ -178,12 +174,12 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: AllTheTimes,
CompareOp: ValueIsAbove,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 0.11, Timestamp: 1000}, // 110ms
{Value: 0.12, Timestamp: 2000}, // 120ms
{Value: 0.15, Timestamp: 3000}, // 150ms
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{
makeValue(0.11, 1000), // 110ms
makeValue(0.12, 2000), // 120ms
makeValue(0.15, 3000), // 150ms
},
},
ruleUnit: "s",
@@ -198,11 +194,11 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: Last,
CompareOp: ValueIsAbove,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 0.15, Timestamp: 1000}, // 150kB
{Value: 0.05, Timestamp: 2000}, // 50kB (last value)
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{
makeValue(0.15, 1000), // 150kB
makeValue(0.05, 2000), // 50kB (last value)
},
},
ruleUnit: "decmbytes",
@@ -218,11 +214,9 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: AtleastOnce,
CompareOp: ValueIsAbove,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 0.15, Timestamp: 1000},
},
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{makeValue(0.15, 1000)},
},
ruleUnit: "KBs",
shouldAlert: true,
@@ -237,11 +231,9 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: AtleastOnce,
CompareOp: ValueIsAbove,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 150, Timestamp: 1000}, // 150ms
},
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{makeValue(150, 1000)}, // 150ms
},
ruleUnit: "ms",
shouldAlert: true,
@@ -256,11 +248,9 @@ func TestBasicRuleThresholdEval_UnitConversion(t *testing.T) {
MatchType: AtleastOnce,
CompareOp: ValueIsAbove,
},
series: v3.Series{
Labels: map[string]string{"service": "test"},
Points: []v3.Point{
{Value: 150, Timestamp: 1000}, // 150 (unitless)
},
series: qbtypes.TimeSeries{
Labels: []*qbtypes.Label{makeLabel("service", "test")},
Values: []*qbtypes.TimeSeriesValue{makeValue(150, 1000)}, // 150 (unitless)
},
ruleUnit: "",
shouldAlert: true,

View File

@@ -14,10 +14,10 @@ from fixtures.alertutils import (
from fixtures.logger import setup_logger
from fixtures.utils import get_testdata_file_path
# Alert test cases use a 30-second wait time to verify expected alert firing.
# Alert data is set up to trigger on the first rule manager evaluation.
# With a 15-second eval frequency for most rules, plus alertmanager's
# group_wait and group_interval delays, alerts should fire well within 30 seconds.
# test cases for match type and compare operators have wait time of 30 seconds to verify the alert expectation.
# we've poistioned the alert data to fire the alert on first eval of rule manager, the eval frequency
# for most alert rules are set of 15s so considering this delay plus some delay from alert manager's
# group_wait and group_interval, even in worst case most alerts should be triggered in about 30 seconds
TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
types.AlertTestCase(
name="test_threshold_above_at_least_once",
@@ -25,7 +25,6 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
alert_data=[
types.AlertData(
type="metrics",
# active requests dummy data
data_path="alerts/test_scenarios/threshold_above_at_least_once/alert_data.jsonl",
),
],
@@ -116,28 +115,30 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
],
),
),
types.AlertTestCase(
name="test_threshold_above_last",
rule_path="alerts/test_scenarios/threshold_above_last/rule.json",
alert_data=[
types.AlertData(
type="metrics",
data_path="alerts/test_scenarios/threshold_above_last/alert_data.jsonl",
),
],
alert_expectation=types.AlertExpectation(
should_alert=True,
wait_time_seconds=30,
expected_alerts=[
types.FiringAlert(
labels={
"alertname": "threshold_above_last",
"threshold.name": "critical",
}
),
],
),
),
# TODO: @abhishekhugetech enable the test for matchType last, pylint: disable=W0511
# after the [issue](https://github.com/SigNoz/engineering-pod/issues/3801) with matchType last is fixed
# types.AlertTestCase(
# name="test_threshold_above_last",
# rule_path="alerts/test_scenarios/threshold_above_last/rule.json",
# alert_data=[
# types.AlertData(
# type="metrics",
# data_path="alerts/test_scenarios/threshold_above_last/alert_data.jsonl",
# ),
# ],
# alert_expectation=types.AlertExpectation(
# should_alert=True,
# wait_time_seconds=30,
# expected_alerts=[
# types.FiringAlert(
# labels={
# "alertname": "threshold_above_last",
# "threshold.name": "critical",
# }
# ),
# ],
# ),
# ),
types.AlertTestCase(
name="test_threshold_below_at_least_once",
rule_path="alerts/test_scenarios/threshold_below_at_least_once/rule.json",
@@ -188,7 +189,6 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
alert_data=[
types.AlertData(
type="metrics",
# one rate ~5 + rest 0.01 so it remains in total below 10
data_path="alerts/test_scenarios/threshold_below_in_total/alert_data.jsonl",
),
],
@@ -227,28 +227,30 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
],
),
),
types.AlertTestCase(
name="test_threshold_below_last",
rule_path="alerts/test_scenarios/threshold_below_last/rule.json",
alert_data=[
types.AlertData(
type="metrics",
data_path="alerts/test_scenarios/threshold_below_last/alert_data.jsonl",
),
],
alert_expectation=types.AlertExpectation(
should_alert=True,
wait_time_seconds=30,
expected_alerts=[
types.FiringAlert(
labels={
"alertname": "threshold_below_last",
"threshold.name": "critical",
}
),
],
),
),
# TODO: @abhishekhugetech enable the test for matchType last,
# after the [issue](https://github.com/SigNoz/engineering-pod/issues/3801) with matchType last is fixed, pylint: disable=W0511
# types.AlertTestCase(
# name="test_threshold_below_last",
# rule_path="alerts/test_scenarios/threshold_below_last/rule.json",
# alert_data=[
# types.AlertData(
# type="metrics",
# data_path="alerts/test_scenarios/threshold_below_last/alert_data.jsonl",
# ),
# ],
# alert_expectation=types.AlertExpectation(
# should_alert=True,
# wait_time_seconds=30,
# expected_alerts=[
# types.FiringAlert(
# labels={
# "alertname": "threshold_below_last",
# "threshold.name": "critical",
# }
# ),
# ],
# ),
# ),
types.AlertTestCase(
name="test_threshold_equal_to_at_least_once",
rule_path="alerts/test_scenarios/threshold_equal_to_at_least_once/rule.json",
@@ -337,28 +339,30 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
],
),
),
types.AlertTestCase(
name="test_threshold_equal_to_last",
rule_path="alerts/test_scenarios/threshold_equal_to_last/rule.json",
alert_data=[
types.AlertData(
type="metrics",
data_path="alerts/test_scenarios/threshold_equal_to_last/alert_data.jsonl",
),
],
alert_expectation=types.AlertExpectation(
should_alert=True,
wait_time_seconds=30,
expected_alerts=[
types.FiringAlert(
labels={
"alertname": "threshold_equal_to_last",
"threshold.name": "critical",
}
),
],
),
),
# TODO: @abhishekhugetech enable the test for matchType last,
# after the [issue](https://github.com/SigNoz/engineering-pod/issues/3801) with matchType last is fixed, pylint: disable=W0511
# types.AlertTestCase(
# name="test_threshold_equal_to_last",
# rule_path="alerts/test_scenarios/threshold_equal_to_last/rule.json",
# alert_data=[
# types.AlertData(
# type="metrics",
# data_path="alerts/test_scenarios/threshold_equal_to_last/alert_data.jsonl",
# ),
# ],
# alert_expectation=types.AlertExpectation(
# should_alert=True,
# wait_time_seconds=30,
# expected_alerts=[
# types.FiringAlert(
# labels={
# "alertname": "threshold_equal_to_last",
# "threshold.name": "critical",
# }
# ),
# ],
# ),
# ),
types.AlertTestCase(
name="test_threshold_not_equal_to_at_least_once",
rule_path="alerts/test_scenarios/threshold_not_equal_to_at_least_once/rule.json",
@@ -447,28 +451,30 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
],
),
),
types.AlertTestCase(
name="test_threshold_not_equal_to_last",
rule_path="alerts/test_scenarios/threshold_not_equal_to_last/rule.json",
alert_data=[
types.AlertData(
type="metrics",
data_path="alerts/test_scenarios/threshold_not_equal_to_last/alert_data.jsonl",
),
],
alert_expectation=types.AlertExpectation(
should_alert=True,
wait_time_seconds=30,
expected_alerts=[
types.FiringAlert(
labels={
"alertname": "threshold_not_equal_to_last",
"threshold.name": "critical",
}
),
],
),
),
# TODO: @abhishekhugetech enable the test for matchType last,
# after the [issue](https://github.com/SigNoz/engineering-pod/issues/3801) with matchType last is fixed, pylint: disable=W0511
# types.AlertTestCase(
# name="test_threshold_not_equal_to_last",
# rule_path="alerts/test_scenarios/threshold_not_equal_to_last/rule.json",
# alert_data=[
# types.AlertData(
# type="metrics",
# data_path="alerts/test_scenarios/threshold_not_equal_to_last/alert_data.jsonl",
# ),
# ],
# alert_expectation=types.AlertExpectation(
# should_alert=True,
# wait_time_seconds=30,
# expected_alerts=[
# types.FiringAlert(
# labels={
# "alertname": "threshold_not_equal_to_last",
# "threshold.name": "critical",
# }
# ),
# ],
# ),
# ),
]
# test cases unit conversion

File diff suppressed because it is too large Load Diff

View File

@@ -54,17 +54,17 @@ def test_rate_with_steady_values_and_reset(
data = response.json()
result_values = sorted(get_series_values(data, "A"), key=lambda x: x["timestamp"])
assert len(result_values) >= 58
assert len(result_values) >= 59
# the counter reset happened at 31st minute
assert (
result_values[29]["value"] == 0.0167
result_values[30]["value"] == 0.0167
) # i.e 2/120 i.e 29th to 31st minute changes
assert (
result_values[30]["value"] == 0.133
result_values[31]["value"] == 0.133
) # i.e 10/60 i.e 31st to 32nd minute changes
count_of_steady_rate = sum(1 for v in result_values if v["value"] == 0.0833)
assert (
count_of_steady_rate >= 55
count_of_steady_rate >= 56
) # 59 - (1 reset + 1 high rate + 1 at the beginning)
# All rates should be non-negative (stale periods = 0 rate)
for v in result_values:

View File

@@ -72,17 +72,16 @@ def test_with_steady_values_and_reset(
data = response.json()
result_values = sorted(get_series_values(data, "A"), key=lambda x: x["timestamp"])
assert len(result_values) >= 58
assert len(result_values) >= 59
# the counter reset happened at 31st minute
# we skip the rate value for the first data point without previous value
assert result_values[29]["value"] == expected_value_at_31st_minute
assert result_values[30]["value"] == expected_value_at_32nd_minute
assert result_values[30]["value"] == expected_value_at_31st_minute
assert result_values[31]["value"] == expected_value_at_32nd_minute
assert (
result_values[38]["value"] == steady_value
) # 38th minute is when cumulative shifts to delta
result_values[39]["value"] == steady_value
) # 39th minute is when cumulative shifts to delta
count_of_steady_rate = sum(1 for v in result_values if v["value"] == steady_value)
assert (
count_of_steady_rate >= 55
count_of_steady_rate >= 56
) # 59 - (1 reset + 1 high rate + 1 at the beginning)
# All rates should be non-negative (stale periods = 0 rate)
for v in result_values:
@@ -317,12 +316,12 @@ def test_for_service_with_switch(
data = response.json()
result_values = sorted(get_series_values(data, "A"), key=lambda x: x["timestamp"])
assert len(result_values) >= 59
assert result_values[29]["value"] == expected_value_at_30th_minute # 0.183
assert result_values[30]["value"] == expected_value_at_31st_minute # 0.183
assert result_values[37]["value"] == value_at_switch # 0.25
assert len(result_values) >= 60
assert result_values[30]["value"] == expected_value_at_30th_minute # 0.183
assert result_values[31]["value"] == expected_value_at_31st_minute # 0.183
assert result_values[38]["value"] == value_at_switch # 0.25
assert (
result_values[38]["value"] == value_at_switch # 0.25
result_values[39]["value"] == value_at_switch # 0.25
) # 39th minute is when cumulative shifts to delta
# All rates should be non-negative (stale periods = 0 rate)
for v in result_values:

View File

@@ -1,12 +1,12 @@
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:01:00+00:00","value":1,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:02:00+00:00","value":2,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:03:00+00:00","value":4,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:04:00+00:00","value":4,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:05:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:06:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:07:00+00:00","value":36,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:08:00+00:00","value":25,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:09:00+00:00","value":37,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:10:00+00:00","value":35,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:11:00+00:00","value":39,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:12:00+00:00","value":25,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:01:00+00:00","value":1,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:02:00+00:00","value":2,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:03:00+00:00","value":3,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:04:00+00:00","value":4,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:05:00+00:00","value":19,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:06:00+00:00","value":20,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:07:00+00:00","value":35,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:08:00+00:00","value":36,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:09:00+00:00","value":37,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:10:00+00:00","value":38,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:11:00+00:00","value":39,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:12:00+00:00","value":40,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}

View File

@@ -25,7 +25,7 @@
"type": "clickhouse_sql",
"spec": {
"name": "A",
"query": "WITH __temporal_aggregation_cte AS (\n SELECT \n fingerprint, \n toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(60)) AS ts, \n avg(value) AS per_series_value \n FROM signoz_metrics.distributed_samples_v4 AS points \n INNER JOIN (\n SELECT fingerprint \n FROM signoz_metrics.time_series_v4 \n WHERE metric_name IN ('request_total_threshold_above_at_least_once') \n AND LOWER(temporality) LIKE LOWER('cumulative') \n AND __normalized = false \n GROUP BY fingerprint\n ) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint \n WHERE metric_name IN ('request_total_threshold_above_at_least_once') \n AND unix_milli >= $start_timestamp_ms \n AND unix_milli < $end_timestamp_ms \n GROUP BY fingerprint, ts \n ORDER BY fingerprint, ts\n), \n__spatial_aggregation_cte AS (\n SELECT \n ts, \n sum(per_series_value) AS value \n FROM __temporal_aggregation_cte \n WHERE isNaN(per_series_value) = 0 \n GROUP BY ts\n) \nSELECT * FROM __spatial_aggregation_cte \nORDER BY ts"
"query": "WITH __temporal_aggregation_cte AS (\n SELECT \n fingerprint, \n toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(60)) AS ts, \n avg(value) AS per_series_value \n FROM signoz_metrics.distributed_samples_v4 AS points \n INNER JOIN (\n SELECT fingerprint \n FROM signoz_metrics.time_series_v4 \n WHERE metric_name IN ('request_total_threshold_above_at_least_once') \n AND LOWER(temporality) LIKE LOWER('cumulative') \n AND __normalized = false \n GROUP BY fingerprint\n ) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint \n WHERE metric_name IN ('request_total_threshold_above_at_least_once') \n AND unix_milli >= {{.start_timestamp_ms}} \n AND unix_milli < {{.end_timestamp_ms}} \n GROUP BY fingerprint, ts \n ORDER BY fingerprint, ts\n), \n__spatial_aggregation_cte AS (\n SELECT \n ts, \n avg(per_series_value) AS value \n FROM __temporal_aggregation_cte \n WHERE isNaN(per_series_value) = 0 \n GROUP BY ts\n) \nSELECT * FROM __spatial_aggregation_cte \nORDER BY ts"
}
}
]

View File

@@ -1,12 +1,12 @@
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":5,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":12,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":31,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":23,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":58,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":71,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":45,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":81,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":86,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":91,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":5,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":20,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":31,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":46,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":58,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":71,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":76,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":81,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":86,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":91,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}

View File

@@ -1,12 +1,12 @@
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":5,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":20,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":45,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":60,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":65,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":34,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":75,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":5,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":20,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":30,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":40,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":50,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":55,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":60,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":65,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":70,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":75,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}

View File

@@ -1,12 +1,12 @@
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":524288,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":1048576,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":1572864,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":2097152,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":3770016,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":5642880,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":10515744,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":11038632,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":11561520,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":12084408,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":12607296,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":13130184,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":524288,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":1048576,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":1572864,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":2097152,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":3770016,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":5642880,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":10515744,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":11038632,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":11561520,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":12084408,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":12607296,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":13130184,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}