Compare commits

...

5 Commits

Author SHA1 Message Date
Abhi kumar
7f1d350ffe chore: hide chartmanager when queries are merged (#10332)
Some checks are pending
build-staging / prepare (push) Waiting to run
build-staging / js-build (push) Blocked by required conditions
build-staging / go-build (push) Blocked by required conditions
Release Drafter / update_release_draft (push) Waiting to run
build-staging / staging (push) Blocked by required conditions
* chore: hide chartmanager when queries are merged

* chore: added histogram panel tests
2026-02-17 14:02:23 +00:00
Ashwin Bhatkal
1d3134959d refactor: dashboard header components (#10326)
* chore: dashboard header components

* chore: small format
2026-02-17 13:41:03 +00:00
Abhi kumar
b86bd24dd9 feat: added new histogram panel (#10328)
* chore: refactored the config builder and added base config builder

* chore: added a common chart wrapper

* chore: tsc fix

* fix: pr review changes

* fix: pr review changes

* chore: added different tooltips

* chore: removed dayjs extention

* feat: added new barpanel component

* fix: added fix for pr review changes

* chore: added support for bar alignment configuration

* feat: added new histogram panel

* chore: updated structure for bar panel

* fix: fixed merge histogram breaking issue

* chore: pr review changes

* chore: added fill mode + bar color when merged

* chore: code cleanup

* chore: added fill mode + bar color when merged

* feat: added new histogram panel
2026-02-17 13:26:39 +00:00
Srikanth Chekuri
4c49d45cbf fix: update rate/increase query and address several issues in builder… (#10299) 2026-02-17 13:09:58 +00:00
Abhi kumar
9b3d3453b1 feat: added new histogram panel component (#10278)
* chore: refactored the config builder and added base config builder

* chore: added a common chart wrapper

* chore: tsc fix

* fix: pr review changes

* fix: pr review changes

* chore: added different tooltips

* chore: removed dayjs extention

* feat: added new barpanel component

* fix: added fix for pr review changes

* chore: added support for bar alignment configuration

* feat: added new histogram panel

* chore: updated structure for bar panel

* fix: fixed merge histogram breaking issue

* chore: pr review changes

* chore: added fill mode + bar color when merged

* chore: code cleanup

* chore: added fill mode + bar color when merged
2026-02-17 12:38:54 +00:00
61 changed files with 2723 additions and 1631 deletions

View File

@@ -176,25 +176,6 @@ Wir haben Benchmarks veröffentlicht, die Loki mit SigNoz vergleichen. Schauen S
Wir ❤️ Beiträge zum Projekt, egal ob große oder kleine. Bitte lies dir zuerst die [CONTRIBUTING.md](CONTRIBUTING.md), durch, bevor du anfängst, Beiträge zu SigNoz zu machen.
Du bist dir nicht sicher, wie du anfangen sollst? Schreib uns einfach auf dem #contributing Kanal in unserer [slack community](https://signoz.io/slack)
### Unsere Projektbetreuer
#### Backend
- [Ankit Nayan](https://github.com/ankitnayan)
- [Nityananda Gohain](https://github.com/nityanandagohain)
- [Srikanth Chekuri](https://github.com/srikanthccv)
- [Vishal Sharma](https://github.com/makeavish)
#### Frontend
- [Palash Gupta](https://github.com/palashgdev)
- [Yunus M](https://github.com/YounixM)
- [Rajat Dabade](https://github.com/Rajat-Dabade)
#### DevOps
- [Prashant Shahi](https://github.com/prashant-shahi)
<br /><br />
## Dokumentation

View File

@@ -221,34 +221,6 @@ We ❤️ contributions big or small. Please read [CONTRIBUTING.md](CONTRIBUTING
Not sure how to get started? Just ping us on `#contributing` in our [slack community](https://signoz.io/slack)
### Project maintainers
#### Backend
- [Ankit Nayan](https://github.com/ankitnayan)
- [Nityananda Gohain](https://github.com/nityanandagohain)
- [Srikanth Chekuri](https://github.com/srikanthccv)
- [Vishal Sharma](https://github.com/makeavish)
- [Shivanshu Raj Shrivastava](https://github.com/shivanshuraj1333)
- [Ekansh Gupta](https://github.com/eKuG)
- [Aniket Agarwal](https://github.com/aniketio-ctrl)
#### Frontend
- [Yunus M](https://github.com/YounixM)
- [Vikrant Gupta](https://github.com/vikrantgupta25)
- [Sagar Rajput](https://github.com/SagarRajput-7)
- [Shaheer Kochai](https://github.com/ahmadshaheer)
- [Amlan Kumar Nandy](https://github.com/amlannandy)
- [Sahil Khan](https://github.com/sawhil)
- [Aditya Singh](https://github.com/aks07)
- [Abhi Kumar](https://github.com/ahrefabhi)
#### DevOps
- [Prashant Shahi](https://github.com/prashant-shahi)
- [Vibhu Pandey](https://github.com/therealpandey)
<br /><br />

View File

@@ -187,25 +187,6 @@ Jaeger 仅仅是一个分布式追踪系统。 但是 SigNoz 可以提供 metric
如果你不知道如何开始? 只需要在 [slack 社区](https://signoz.io/slack) 通过 `#contributing` 频道联系我们。
### 项目维护人员
#### 后端
- [Ankit Nayan](https://github.com/ankitnayan)
- [Nityananda Gohain](https://github.com/nityanandagohain)
- [Srikanth Chekuri](https://github.com/srikanthccv)
- [Vishal Sharma](https://github.com/makeavish)
#### 前端
- [Palash Gupta](https://github.com/palashgdev)
- [Yunus M](https://github.com/YounixM)
- [Rajat Dabade](https://github.com/Rajat-Dabade)
#### 运维开发
- [Prashant Shahi](https://github.com/prashant-shahi)
<br /><br />
## 文档

View File

@@ -294,7 +294,6 @@ flagger:
config:
boolean:
use_span_metrics: true
interpolation_enabled: false
kafka_span_eval: false
string:
float:

View File

@@ -9,74 +9,6 @@
padding: 0px;
}
.dashboard-header {
border-bottom: 1px solid var(--bg-slate-400);
display: flex;
justify-content: space-between;
gap: 16px;
align-items: center;
padding: 0 8px;
box-sizing: border-box;
.dashboard-breadcrumbs {
width: 100%;
height: 48px;
display: flex;
gap: 6px;
align-items: center;
max-width: 80%;
.dashboard-btn {
display: flex;
align-items: center;
color: var(--bg-vanilla-400);
font-family: Inter;
font-size: 14px;
font-style: normal;
font-weight: 400;
line-height: 20px; /* 142.857% */
letter-spacing: -0.07px;
padding: 0px;
height: 20px;
}
.dashboard-btn:hover {
background-color: unset;
}
.id-btn {
display: flex;
align-items: center;
padding: 0px 2px;
border-radius: 2px;
background: rgba(113, 144, 249, 0.1);
color: var(--bg-robin-400);
font-family: Inter;
font-size: 14px;
font-style: normal;
font-weight: 400;
line-height: 20px; /* 142.857% */
height: 20px;
max-width: calc(100% - 120px);
span {
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
.ant-btn-icon {
margin-inline-end: 4px;
}
}
.id-btn:hover {
background: rgba(113, 144, 249, 0.1);
color: var(--bg-robin-300);
}
}
}
.dashboard-details {
display: flex;
justify-content: space-between;
@@ -535,15 +467,6 @@
.dashboard-description-container {
color: var(--bg-ink-400);
.dashboard-header {
border-bottom: 1px solid var(--bg-vanilla-300);
.dashboard-breadcrumbs {
.dashboard-btn {
color: var(--bg-ink-400);
}
}
}
.dashboard-details {
.left-section {
.dashboard-title {

View File

@@ -16,9 +16,7 @@ import {
} from 'antd';
import logEvent from 'api/common/logEvent';
import ConfigureIcon from 'assets/Integrations/ConfigureIcon';
import HeaderRightSection from 'components/HeaderRightSection/HeaderRightSection';
import { PANEL_GROUP_TYPES, PANEL_TYPES } from 'constants/queryBuilder';
import ROUTES from 'constants/routes';
import { DeleteButton } from 'container/ListOfDashboard/TableComponents/DeleteButton';
import DateTimeSelectionV2 from 'container/TopNav/DateTimeSelectionV2';
import { useDashboardVariables } from 'hooks/dashboard/useDashboardVariables';
@@ -27,7 +25,6 @@ import { useUpdateDashboard } from 'hooks/dashboard/useUpdateDashboard';
import useComponentPermission from 'hooks/useComponentPermission';
import { useGetTenantLicense } from 'hooks/useGetTenantLicense';
import { useNotifications } from 'hooks/useNotifications';
import { useSafeNavigate } from 'hooks/useSafeNavigate';
import { isEmpty } from 'lodash-es';
import {
Check,
@@ -37,7 +34,6 @@ import {
FolderKanban,
Fullscreen,
Globe,
LayoutGrid,
LockKeyhole,
PenLine,
X,
@@ -51,6 +47,7 @@ import { ROLES, USER_ROLES } from 'types/roles';
import { ComponentTypes } from 'utils/permission';
import { v4 as uuid } from 'uuid';
import DashboardHeader from '../components/DashboardHeader/DashboardHeader';
import DashboardGraphSlider from '../ComponentsSlider';
import DashboardSettings from '../DashboardSettings';
import { Base64Icons } from '../DashboardSettings/General/utils';
@@ -71,7 +68,6 @@ interface DashboardDescriptionProps {
// eslint-disable-next-line sonarjs/cognitive-complexity
function DashboardDescription(props: DashboardDescriptionProps): JSX.Element {
const { safeNavigate } = useSafeNavigate();
const { handle } = props;
const {
selectedDashboard,
@@ -80,7 +76,6 @@ function DashboardDescription(props: DashboardDescriptionProps): JSX.Element {
layouts,
setLayouts,
isDashboardLocked,
listSortOrder,
setSelectedDashboard,
handleToggleDashboardSlider,
setSelectedRowWidgetId,
@@ -292,17 +287,6 @@ function DashboardDescription(props: DashboardDescriptionProps): JSX.Element {
});
}
function goToListPage(): void {
const urlParams = new URLSearchParams();
urlParams.set('columnKey', listSortOrder.columnKey as string);
urlParams.set('order', listSortOrder.order as string);
urlParams.set('page', listSortOrder.pagination as string);
urlParams.set('search', listSortOrder.search as string);
const generatedUrl = `${ROUTES.ALL_DASHBOARD}?${urlParams.toString()}`;
safeNavigate(generatedUrl);
}
const {
data: publicDashboardResponse,
isLoading: isLoadingPublicDashboardData,
@@ -351,32 +335,7 @@ function DashboardDescription(props: DashboardDescriptionProps): JSX.Element {
return (
<Card className="dashboard-description-container">
<div className="dashboard-header">
<section className="dashboard-breadcrumbs">
<Button
type="text"
icon={<LayoutGrid size={14} />}
className="dashboard-btn"
onClick={(): void => goToListPage()}
>
Dashboard /
</Button>
<Button type="text" className="id-btn dashboard-name-btn">
<img
src={image}
alt="dashboard-icon"
style={{ height: '14px', width: '14px' }}
/>
{title}
</Button>
</section>
<HeaderRightSection
enableAnnouncements={false}
enableShare
enableFeedback
/>
</div>
<DashboardHeader />
<section className="dashboard-details">
<div className="left-section">
<img src={image} alt="dashboard-img" className="dashboard-img" />

View File

@@ -0,0 +1,71 @@
.dashboard-breadcrumbs {
width: 100%;
height: 48px;
display: flex;
gap: 6px;
align-items: center;
max-width: 80%;
.dashboard-btn {
display: flex;
align-items: center;
color: var(--bg-vanilla-400);
font-family: Inter;
font-size: 14px;
font-style: normal;
font-weight: 400;
line-height: 20px; /* 142.857% */
letter-spacing: -0.07px;
padding: 0px;
height: 20px;
}
.dashboard-btn:hover {
background-color: unset;
}
.id-btn {
display: flex;
align-items: center;
gap: 4px;
padding: 0px 2px;
border-radius: 2px;
background: rgba(113, 144, 249, 0.1);
color: var(--bg-robin-400);
font-family: Inter;
font-size: 14px;
font-style: normal;
font-weight: 400;
line-height: 20px; /* 142.857% */
height: 20px;
max-width: calc(100% - 120px);
span {
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
.ant-btn-icon {
margin-inline-end: 4px;
}
}
.id-btn:hover {
background: rgba(113, 144, 249, 0.1);
color: var(--bg-robin-300);
}
.dashboard-icon-image {
height: 14px;
width: 14px;
}
}
.lightMode {
.dashboard-breadcrumbs {
.dashboard-btn {
color: var(--bg-ink-400);
}
}
}

View File

@@ -0,0 +1,55 @@
import { useCallback } from 'react';
import { Button } from 'antd';
import ROUTES from 'constants/routes';
import { useSafeNavigate } from 'hooks/useSafeNavigate';
import { LayoutGrid } from 'lucide-react';
import { useDashboard } from 'providers/Dashboard/Dashboard';
import { DashboardData } from 'types/api/dashboard/getAll';
import { Base64Icons } from '../../DashboardSettings/General/utils';
import './DashboardBreadcrumbs.styles.scss';
function DashboardBreadcrumbs(): JSX.Element {
const { safeNavigate } = useSafeNavigate();
const { selectedDashboard, listSortOrder } = useDashboard();
const selectedData = selectedDashboard
? {
...selectedDashboard.data,
uuid: selectedDashboard.id,
}
: ({} as DashboardData);
const { title = '', image = Base64Icons[0] } = selectedData || {};
const goToListPage = useCallback(() => {
const urlParams = new URLSearchParams();
urlParams.set('columnKey', listSortOrder.columnKey as string);
urlParams.set('order', listSortOrder.order as string);
urlParams.set('page', listSortOrder.pagination as string);
urlParams.set('search', listSortOrder.search as string);
const generatedUrl = `${ROUTES.ALL_DASHBOARD}?${urlParams.toString()}`;
safeNavigate(generatedUrl);
}, [listSortOrder, safeNavigate]);
return (
<div className="dashboard-breadcrumbs">
<Button
type="text"
icon={<LayoutGrid size={14} />}
className="dashboard-btn"
onClick={goToListPage}
>
Dashboard /
</Button>
<Button type="text" className="id-btn dashboard-name-btn">
<img src={image} alt="dashboard-icon" className="dashboard-icon-image" />
{title}
</Button>
</div>
);
}
export default DashboardBreadcrumbs;

View File

@@ -0,0 +1,15 @@
.dashboard-header {
border-bottom: 1px solid var(--bg-slate-400);
display: flex;
justify-content: space-between;
gap: 16px;
align-items: center;
padding: 0 8px;
box-sizing: border-box;
}
.lightMode {
.dashboard-header {
border-bottom: 1px solid var(--bg-vanilla-300);
}
}

View File

@@ -0,0 +1,17 @@
import { memo } from 'react';
import HeaderRightSection from 'components/HeaderRightSection/HeaderRightSection';
import DashboardBreadcrumbs from './DashboardBreadcrumbs';
import './DashboardHeader.styles.scss';
function DashboardHeader(): JSX.Element {
return (
<div className="dashboard-header">
<DashboardBreadcrumbs />
<HeaderRightSection enableAnnouncements={false} enableShare enableFeedback />
</div>
);
}
export default memo(DashboardHeader);

View File

@@ -23,6 +23,7 @@ export default function ChartWrapper({
width: containerWidth,
height: containerHeight,
showTooltip = true,
showLegend = true,
canPinTooltip = false,
syncMode,
syncKey,
@@ -36,6 +37,9 @@ export default function ChartWrapper({
const legendComponent = useCallback(
(averageLegendWidth: number): React.ReactNode => {
if (!showLegend) {
return null;
}
return (
<Legend
config={config}
@@ -44,7 +48,7 @@ export default function ChartWrapper({
/>
);
},
[config, legendConfig.position],
[config, legendConfig.position, showLegend],
);
const renderTooltipCallback = useCallback(
@@ -60,6 +64,7 @@ export default function ChartWrapper({
return (
<PlotContextProvider>
<ChartLayout
showLegend={showLegend}
config={config}
containerWidth={containerWidth}
containerHeight={containerHeight}

View File

@@ -0,0 +1,55 @@
import { useCallback } from 'react';
import ChartWrapper from 'container/DashboardContainer/visualization/charts/ChartWrapper/ChartWrapper';
import HistogramTooltip from 'lib/uPlotV2/components/Tooltip/HistogramTooltip';
import { buildTooltipContent } from 'lib/uPlotV2/components/Tooltip/utils';
import {
HistogramTooltipProps,
TooltipRenderArgs,
} from 'lib/uPlotV2/components/types';
import { HistogramChartProps } from '../types';
export default function Histogram(props: HistogramChartProps): JSX.Element {
const {
children,
renderTooltip: customRenderTooltip,
isQueriesMerged,
...rest
} = props;
const renderTooltip = useCallback(
(props: TooltipRenderArgs): React.ReactNode => {
if (customRenderTooltip) {
return customRenderTooltip(props);
}
const content = buildTooltipContent({
data: props.uPlotInstance.data,
series: props.uPlotInstance.series,
dataIndexes: props.dataIndexes,
activeSeriesIndex: props.seriesIndex,
uPlotInstance: props.uPlotInstance,
yAxisUnit: rest.yAxisUnit ?? '',
decimalPrecision: rest.decimalPrecision,
});
const tooltipProps: HistogramTooltipProps = {
...props,
timezone: rest.timezone,
yAxisUnit: rest.yAxisUnit,
decimalPrecision: rest.decimalPrecision,
content,
};
return <HistogramTooltip {...tooltipProps} />;
},
[customRenderTooltip, rest.timezone, rest.yAxisUnit, rest.decimalPrecision],
);
return (
<ChartWrapper
showLegend={!isQueriesMerged}
{...rest}
renderTooltip={renderTooltip}
>
{children}
</ChartWrapper>
);
}

View File

@@ -7,6 +7,7 @@ interface BaseChartProps {
width: number;
height: number;
showTooltip?: boolean;
showLegend?: boolean;
timezone: string;
canPinTooltip?: boolean;
yAxisUnit?: string;
@@ -17,6 +18,7 @@ interface BaseChartProps {
interface UPlotBasedChartProps {
config: UPlotConfigBuilder;
data: uPlot.AlignedData;
legendConfig: LegendConfig;
syncMode?: DashboardCursorSync;
syncKey?: string;
plotRef?: (plot: uPlot | null) => void;
@@ -26,14 +28,20 @@ interface UPlotBasedChartProps {
}
export interface TimeSeriesChartProps
extends BaseChartProps,
UPlotBasedChartProps {}
export interface HistogramChartProps
extends BaseChartProps,
UPlotBasedChartProps {
legendConfig: LegendConfig;
isQueriesMerged?: boolean;
}
export interface BarChartProps extends BaseChartProps, UPlotBasedChartProps {
legendConfig: LegendConfig;
isStackedBarChart?: boolean;
}
export type ChartProps = TimeSeriesChartProps | BarChartProps;
export type ChartProps =
| TimeSeriesChartProps
| BarChartProps
| HistogramChartProps;

View File

@@ -0,0 +1,69 @@
import { renderHook } from '@testing-library/react';
import { useDashboard } from 'providers/Dashboard/Dashboard';
import { useScrollWidgetIntoView } from '../useScrollWidgetIntoView';
jest.mock('providers/Dashboard/Dashboard');
type MockHTMLElement = {
scrollIntoView: jest.Mock;
focus: jest.Mock;
};
function createMockElement(): MockHTMLElement {
return {
scrollIntoView: jest.fn(),
focus: jest.fn(),
};
}
describe('useScrollWidgetIntoView', () => {
const mockedUseDashboard = useDashboard as jest.MockedFunction<
typeof useDashboard
>;
beforeEach(() => {
jest.clearAllMocks();
});
it('scrolls into view and focuses when toScrollWidgetId matches widget id', () => {
const setToScrollWidgetId = jest.fn();
const mockElement = createMockElement();
const ref = ({
current: mockElement,
} as unknown) as React.RefObject<HTMLDivElement>;
mockedUseDashboard.mockReturnValue(({
toScrollWidgetId: 'widget-id',
setToScrollWidgetId,
} as unknown) as ReturnType<typeof useDashboard>);
renderHook(() => useScrollWidgetIntoView('widget-id', ref));
expect(mockElement.scrollIntoView).toHaveBeenCalledWith({
behavior: 'smooth',
block: 'center',
});
expect(mockElement.focus).toHaveBeenCalled();
expect(setToScrollWidgetId).toHaveBeenCalledWith('');
});
it('does nothing when toScrollWidgetId does not match widget id', () => {
const setToScrollWidgetId = jest.fn();
const mockElement = createMockElement();
const ref = ({
current: mockElement,
} as unknown) as React.RefObject<HTMLDivElement>;
mockedUseDashboard.mockReturnValue(({
toScrollWidgetId: 'other-widget',
setToScrollWidgetId,
} as unknown) as ReturnType<typeof useDashboard>);
renderHook(() => useScrollWidgetIntoView('widget-id', ref));
expect(mockElement.scrollIntoView).not.toHaveBeenCalled();
expect(mockElement.focus).not.toHaveBeenCalled();
expect(setToScrollWidgetId).not.toHaveBeenCalled();
});
});

View File

@@ -0,0 +1,26 @@
import { RefObject, useEffect } from 'react';
import { useDashboard } from 'providers/Dashboard/Dashboard';
/**
* Scrolls the given widget container into view when the dashboard
* requests it via `toScrollWidgetId`.
*
* Intended for use in panel components that render a single widget.
*/
export function useScrollWidgetIntoView<T extends HTMLElement>(
widgetId: string,
widgetContainerRef: RefObject<T>,
): void {
const { toScrollWidgetId, setToScrollWidgetId } = useDashboard();
useEffect(() => {
if (toScrollWidgetId === widgetId) {
widgetContainerRef.current?.scrollIntoView({
behavior: 'smooth',
block: 'center',
});
widgetContainerRef.current?.focus();
setToScrollWidgetId('');
}
}, [toScrollWidgetId, setToScrollWidgetId, widgetId, widgetContainerRef]);
}

View File

@@ -1,12 +1,14 @@
import { useMemo } from 'react';
import cx from 'classnames';
import { calculateChartDimensions } from 'container/DashboardContainer/visualization/charts/utils';
import { MAX_LEGEND_WIDTH } from 'lib/uPlotV2/components/Legend/Legend';
import { LegendConfig, LegendPosition } from 'lib/uPlotV2/components/types';
import { UPlotConfigBuilder } from 'lib/uPlotV2/config/UPlotConfigBuilder';
import './ChartLayout.styles.scss';
export interface ChartLayoutProps {
showLegend?: boolean;
legendComponent: (legendPerSet: number) => React.ReactNode;
children: (props: {
chartWidth: number;
@@ -20,6 +22,7 @@ export interface ChartLayoutProps {
config: UPlotConfigBuilder;
}
export default function ChartLayout({
showLegend = true,
legendComponent,
children,
layoutChildren,
@@ -30,6 +33,15 @@ export default function ChartLayout({
}: ChartLayoutProps): JSX.Element {
const chartDimensions = useMemo(
() => {
if (!showLegend) {
return {
width: containerWidth,
height: containerHeight,
legendWidth: 0,
legendHeight: 0,
averageLegendWidth: MAX_LEGEND_WIDTH,
};
}
const legendItemsMap = config.getLegendItems();
const seriesLabels = Object.values(legendItemsMap)
.map((item) => item.label)
@@ -42,7 +54,7 @@ export default function ChartLayout({
});
},
// eslint-disable-next-line react-hooks/exhaustive-deps
[containerWidth, containerHeight, legendConfig],
[containerWidth, containerHeight, legendConfig, showLegend],
);
return (
@@ -60,15 +72,17 @@ export default function ChartLayout({
averageLegendWidth: chartDimensions.averageLegendWidth,
})}
</div>
<div
className="chart-layout__legend-wrapper"
style={{
height: chartDimensions.legendHeight,
width: chartDimensions.legendWidth,
}}
>
{legendComponent(chartDimensions.averageLegendWidth)}
</div>
{showLegend && (
<div
className="chart-layout__legend-wrapper"
style={{
height: chartDimensions.legendHeight,
width: chartDimensions.legendWidth,
}}
>
{legendComponent(chartDimensions.averageLegendWidth)}
</div>
)}
</div>
{layoutChildren}
</div>

View File

@@ -1,10 +1,10 @@
import { useCallback, useEffect, useMemo, useRef, useState } from 'react';
import { useScrollWidgetIntoView } from 'container/DashboardContainer/visualization/hooks/useScrollWidgetIntoView';
import { PanelWrapperProps } from 'container/PanelWrapper/panelWrapper.types';
import { useIsDarkMode } from 'hooks/useDarkMode';
import { useResizeObserver } from 'hooks/useDimensions';
import { LegendPosition } from 'lib/uPlotV2/components/types';
import ContextMenu from 'periscope/components/ContextMenu';
import { useDashboard } from 'providers/Dashboard/Dashboard';
import { useTimezone } from 'providers/Timezone';
import { MetricRangePayloadProps } from 'types/api/metrics/getQueryRange';
import uPlot from 'uplot';
@@ -27,7 +27,6 @@ function BarPanel(props: PanelWrapperProps): JSX.Element {
onToggleModelHandler,
} = props;
const uPlotRef = useRef<uPlot | null>(null);
const { toScrollWidgetId, setToScrollWidgetId } = useDashboard();
const graphRef = useRef<HTMLDivElement>(null);
const [minTimeScale, setMinTimeScale] = useState<number>();
const [maxTimeScale, setMaxTimeScale] = useState<number>();
@@ -36,16 +35,7 @@ function BarPanel(props: PanelWrapperProps): JSX.Element {
const isDarkMode = useIsDarkMode();
const { timezone } = useTimezone();
useEffect(() => {
if (toScrollWidgetId === widget.id) {
graphRef.current?.scrollIntoView({
behavior: 'smooth',
block: 'center',
});
graphRef.current?.focus();
setToScrollWidgetId('');
}
}, [toScrollWidgetId, setToScrollWidgetId, widget.id]);
useScrollWidgetIntoView(widget.id, graphRef);
useEffect((): void => {
const { startTime, endTime } = getTimeRange(queryResponse);

View File

@@ -0,0 +1,114 @@
import { useMemo, useRef } from 'react';
import { useScrollWidgetIntoView } from 'container/DashboardContainer/visualization/hooks/useScrollWidgetIntoView';
import { PanelWrapperProps } from 'container/PanelWrapper/panelWrapper.types';
import { useIsDarkMode } from 'hooks/useDarkMode';
import { useResizeObserver } from 'hooks/useDimensions';
import { LegendPosition } from 'lib/uPlotV2/components/types';
import { DashboardCursorSync } from 'lib/uPlotV2/plugins/TooltipPlugin/types';
import { useTimezone } from 'providers/Timezone';
import { MetricRangePayloadProps } from 'types/api/metrics/getQueryRange';
import uPlot from 'uplot';
import Histogram from '../../charts/Histogram/Histogram';
import ChartManager from '../../components/ChartManager/ChartManager';
import {
prepareHistogramPanelConfig,
prepareHistogramPanelData,
} from './utils';
import '../Panel.styles.scss';
function HistogramPanel(props: PanelWrapperProps): JSX.Element {
const {
panelMode,
queryResponse,
widget,
isFullViewMode,
onToggleModelHandler,
} = props;
const uPlotRef = useRef<uPlot | null>(null);
const graphRef = useRef<HTMLDivElement>(null);
const containerDimensions = useResizeObserver(graphRef);
const isDarkMode = useIsDarkMode();
const { timezone } = useTimezone();
useScrollWidgetIntoView(widget.id, graphRef);
const config = useMemo(() => {
return prepareHistogramPanelConfig({
widget,
isDarkMode,
apiResponse: queryResponse?.data?.payload as MetricRangePayloadProps,
panelMode,
});
}, [widget, isDarkMode, queryResponse?.data?.payload, panelMode]);
const chartData = useMemo(() => {
if (!queryResponse?.data?.payload) {
return [];
}
return prepareHistogramPanelData({
apiResponse: queryResponse?.data?.payload as MetricRangePayloadProps,
bucketWidth: widget?.bucketWidth,
bucketCount: widget?.bucketCount,
mergeAllActiveQueries: widget?.mergeAllActiveQueries,
});
}, [
queryResponse?.data?.payload,
widget?.bucketWidth,
widget?.bucketCount,
widget?.mergeAllActiveQueries,
]);
const layoutChildren = useMemo(() => {
if (!isFullViewMode || widget.mergeAllActiveQueries) {
return null;
}
return (
<ChartManager
config={config}
alignedData={chartData}
yAxisUnit={widget.yAxisUnit}
onCancel={onToggleModelHandler}
/>
);
}, [
isFullViewMode,
config,
chartData,
widget.yAxisUnit,
onToggleModelHandler,
widget.mergeAllActiveQueries,
]);
return (
<div className="panel-container" ref={graphRef}>
{containerDimensions.width > 0 && containerDimensions.height > 0 && (
<Histogram
config={config}
legendConfig={{
position: widget?.legendPosition ?? LegendPosition.BOTTOM,
}}
plotRef={(plot: uPlot | null): void => {
uPlotRef.current = plot;
}}
onDestroy={(): void => {
uPlotRef.current = null;
}}
isQueriesMerged={widget.mergeAllActiveQueries}
yAxisUnit={widget.yAxisUnit}
decimalPrecision={widget.decimalPrecision}
syncMode={DashboardCursorSync.Crosshair}
timezone={timezone.value}
data={chartData as uPlot.AlignedData}
width={containerDimensions.width}
height={containerDimensions.height}
layoutChildren={layoutChildren}
/>
)}
</div>
);
}
export default HistogramPanel;

View File

@@ -0,0 +1,223 @@
/* eslint-disable simple-import-sort/imports */
import type { UseQueryResult } from 'react-query';
import { render, screen } from 'tests/test-utils';
import { PanelMode } from 'container/DashboardContainer/visualization/panels/types';
import { LegendPosition } from 'lib/uPlotV2/components/types';
import { Widgets } from 'types/api/dashboard/getAll';
import {
MetricQueryRangeSuccessResponse,
MetricRangePayloadProps,
} from 'types/api/metrics/getQueryRange';
import HistogramPanel from '../HistogramPanel';
import { HistogramChartProps } from 'container/DashboardContainer/visualization/charts/types';
jest.mock('hooks/useDimensions', () => ({
useResizeObserver: jest.fn().mockReturnValue({ width: 800, height: 400 }),
}));
jest.mock('hooks/useDarkMode', () => ({
useIsDarkMode: jest.fn().mockReturnValue(false),
}));
jest.mock('providers/Timezone', () => ({
__esModule: true,
// Provide a no-op provider component so AllTheProviders can render
default: ({ children }: { children: React.ReactNode }): JSX.Element => (
<>{children}</>
),
// And mock the hook used by HistogramPanel
useTimezone: jest.fn().mockReturnValue({
timezone: { value: 'UTC' },
}),
}));
jest.mock(
'container/DashboardContainer/visualization/hooks/useScrollWidgetIntoView',
() => ({
useScrollWidgetIntoView: jest.fn(),
}),
);
jest.mock(
'container/DashboardContainer/visualization/charts/Histogram/Histogram',
() => ({
__esModule: true,
default: (props: HistogramChartProps): JSX.Element => (
<div data-testid="histogram-chart">
<div data-testid="histogram-props">
{JSON.stringify({
legendPosition: props.legendConfig?.position,
isQueriesMerged: props.isQueriesMerged,
yAxisUnit: props.yAxisUnit,
decimalPrecision: props.decimalPrecision,
})}
</div>
{props.layoutChildren}
</div>
),
}),
);
jest.mock(
'container/DashboardContainer/visualization/components/ChartManager/ChartManager',
() => ({
__esModule: true,
default: (): JSX.Element => (
<div data-testid="chart-manager">ChartManager</div>
),
}),
);
function createQueryResponse(
payloadOverrides: Partial<MetricRangePayloadProps> = {},
): { data: { payload: MetricRangePayloadProps } } {
const basePayload: MetricRangePayloadProps = {
data: {
result: [
{
metric: {},
queryName: 'A',
legend: 'Series A',
values: [
[1, '10'],
[2, '20'],
],
},
],
resultType: 'matrix',
newResult: {
data: {
result: [],
resultType: 'matrix',
},
},
},
};
return {
data: {
payload: {
...basePayload,
...payloadOverrides,
},
},
};
}
type WidgetLike = {
id: string;
yAxisUnit: string;
decimalPrecision: number;
legendPosition: LegendPosition;
mergeAllActiveQueries: boolean;
};
function createWidget(overrides: Partial<WidgetLike> = {}): WidgetLike {
return {
id: 'widget-id',
yAxisUnit: 'ms',
decimalPrecision: 2,
legendPosition: LegendPosition.BOTTOM,
mergeAllActiveQueries: false,
...overrides,
};
}
describe('HistogramPanel', () => {
it('renders Histogram when container has dimensions', () => {
const widget = (createWidget() as unknown) as Widgets;
const queryResponse = (createQueryResponse() as unknown) as UseQueryResult<
MetricQueryRangeSuccessResponse,
Error
>;
render(
<HistogramPanel
panelMode={PanelMode.DASHBOARD_VIEW}
widget={widget}
queryResponse={queryResponse}
isFullViewMode={false}
onToggleModelHandler={jest.fn()}
onDragSelect={jest.fn()}
/>,
);
expect(screen.getByTestId('histogram-chart')).toBeInTheDocument();
});
it('passes legend position and other props to Histogram', () => {
const widget = (createWidget({
legendPosition: LegendPosition.RIGHT,
}) as unknown) as Widgets;
const queryResponse = (createQueryResponse() as unknown) as UseQueryResult<
MetricQueryRangeSuccessResponse,
Error
>;
render(
<HistogramPanel
panelMode={PanelMode.DASHBOARD_VIEW}
widget={widget}
queryResponse={queryResponse}
isFullViewMode={false}
onToggleModelHandler={jest.fn()}
onDragSelect={jest.fn()}
/>,
);
const propsJson = screen.getByTestId('histogram-props').textContent || '{}';
const parsed = JSON.parse(propsJson);
expect(parsed.legendPosition).toBe(LegendPosition.RIGHT);
expect(parsed.yAxisUnit).toBe('ms');
expect(parsed.decimalPrecision).toBe(2);
});
it('renders ChartManager in full view when queries are not merged', () => {
const widget = (createWidget({
mergeAllActiveQueries: false,
}) as unknown) as Widgets;
const queryResponse = (createQueryResponse() as unknown) as UseQueryResult<
MetricQueryRangeSuccessResponse,
Error
>;
render(
<HistogramPanel
panelMode={PanelMode.DASHBOARD_VIEW}
widget={widget}
queryResponse={queryResponse}
isFullViewMode
onToggleModelHandler={jest.fn()}
onDragSelect={jest.fn()}
/>,
);
expect(screen.getByTestId('chart-manager')).toBeInTheDocument();
});
it('does not render ChartManager when queries are merged', () => {
const widget = (createWidget({
mergeAllActiveQueries: true,
}) as unknown) as Widgets;
const queryResponse = (createQueryResponse() as unknown) as UseQueryResult<
MetricQueryRangeSuccessResponse,
Error
>;
render(
<HistogramPanel
panelMode={PanelMode.DASHBOARD_VIEW}
widget={widget}
queryResponse={queryResponse}
isFullViewMode
onToggleModelHandler={jest.fn()}
onDragSelect={jest.fn()}
/>,
);
expect(screen.queryByTestId('chart-manager')).not.toBeInTheDocument();
});
});

View File

@@ -0,0 +1,231 @@
import { histogramBucketSizes } from '@grafana/data';
import { PANEL_TYPES } from 'constants/queryBuilder';
import { DEFAULT_BUCKET_COUNT } from 'container/PanelWrapper/constants';
import { getLegend } from 'lib/dashboard/getQueryResults';
import getLabelName from 'lib/getLabelName';
import { DrawStyle } from 'lib/uPlotV2/config/types';
import { UPlotConfigBuilder } from 'lib/uPlotV2/config/UPlotConfigBuilder';
import { Widgets } from 'types/api/dashboard/getAll';
import { MetricRangePayloadProps } from 'types/api/metrics/getQueryRange';
import { AlignedData } from 'uplot';
import { incrRoundDn, roundDecimals } from 'utils/round';
import { PanelMode } from '../types';
import { buildBaseConfig } from '../utils/baseConfigBuilder';
import {
buildHistogramBuckets,
mergeAlignedDataTables,
prependNullBinToFirstHistogramSeries,
replaceUndefinedWithNullInAlignedData,
} from '../utils/histogram';
export interface PrepareHistogramPanelDataParams {
apiResponse: MetricRangePayloadProps;
bucketWidth?: number;
bucketCount?: number;
mergeAllActiveQueries?: boolean;
}
const BUCKET_OFFSET = 0;
const HIST_SORT = (a: number, b: number): number => a - b;
function extractNumericValues(
result: MetricRangePayloadProps['data']['result'],
): number[] {
const values: number[] = [];
for (const item of result) {
for (const [, valueStr] of item.values) {
values.push(Number.parseFloat(valueStr) || 0);
}
}
return values;
}
function computeSmallestDelta(sortedValues: number[]): number {
if (sortedValues.length <= 1) {
return 0;
}
let smallest = Infinity;
for (let i = 1; i < sortedValues.length; i++) {
const delta = sortedValues[i] - sortedValues[i - 1];
if (delta > 0) {
smallest = Math.min(smallest, delta);
}
}
return smallest === Infinity ? 0 : smallest;
}
function selectBucketSize({
range,
bucketCount,
smallestDelta,
bucketWidthOverride,
}: {
range: number;
bucketCount: number;
smallestDelta: number;
bucketWidthOverride?: number;
}): number {
if (bucketWidthOverride != null && bucketWidthOverride > 0) {
return bucketWidthOverride;
}
const targetSize = range / bucketCount;
for (const candidate of histogramBucketSizes) {
if (targetSize < candidate && candidate >= smallestDelta) {
return candidate;
}
}
return 0;
}
function buildFrames(
result: MetricRangePayloadProps['data']['result'],
mergeAllActiveQueries: boolean,
): number[][] {
const frames: number[][] = result.map((item) =>
item.values.map(([, valueStr]) => Number.parseFloat(valueStr) || 0),
);
if (mergeAllActiveQueries && frames.length > 1) {
const first = frames[0];
for (let i = 1; i < frames.length; i++) {
first.push(...frames[i]);
frames[i] = [];
}
}
return frames;
}
export function prepareHistogramPanelData({
apiResponse,
bucketWidth,
bucketCount: bucketCountProp = DEFAULT_BUCKET_COUNT,
mergeAllActiveQueries = false,
}: PrepareHistogramPanelDataParams): AlignedData {
const bucketCount = bucketCountProp ?? DEFAULT_BUCKET_COUNT;
const result = apiResponse.data.result;
const seriesValues = extractNumericValues(result);
if (seriesValues.length === 0) {
return [[]];
}
const sorted = [...seriesValues].sort((a, b) => a - b);
const min = sorted[0];
const max = sorted[sorted.length - 1];
const range = max - min;
const smallestDelta = computeSmallestDelta(sorted);
let bucketSize = selectBucketSize({
range,
bucketCount,
smallestDelta,
bucketWidthOverride: bucketWidth,
});
if (bucketSize <= 0) {
bucketSize = range > 0 ? range / bucketCount : 1;
}
const getBucket = (v: number): number =>
roundDecimals(incrRoundDn(v - BUCKET_OFFSET, bucketSize) + BUCKET_OFFSET, 9);
const frames = buildFrames(result, mergeAllActiveQueries);
const histogramsPerSeries: AlignedData[] = frames
.filter((frame) => frame.length > 0)
.map((frame) => buildHistogramBuckets(frame, getBucket, HIST_SORT));
if (histogramsPerSeries.length === 0) {
return [[]];
}
const mergedHistogramData = mergeAlignedDataTables(histogramsPerSeries);
replaceUndefinedWithNullInAlignedData(mergedHistogramData);
prependNullBinToFirstHistogramSeries(mergedHistogramData, bucketSize);
return mergedHistogramData;
}
export function prepareHistogramPanelConfig({
widget,
apiResponse,
panelMode,
isDarkMode,
}: {
widget: Widgets;
apiResponse: MetricRangePayloadProps;
panelMode: PanelMode;
isDarkMode: boolean;
}): UPlotConfigBuilder {
const builder = buildBaseConfig({
widget,
isDarkMode,
apiResponse,
panelMode,
panelType: PANEL_TYPES.HISTOGRAM,
});
builder.setCursor({
drag: {
x: false,
y: false,
setScale: true,
},
focus: {
prox: 1e3,
},
});
builder.addScale({
scaleKey: 'x',
time: false,
auto: true,
});
builder.addScale({
scaleKey: 'y',
time: false,
auto: true,
min: 0,
});
const currentQuery = widget.query;
const mergeAllActiveQueries = widget?.mergeAllActiveQueries ?? false;
// When merged, data has only one y column; add one series to match. Otherwise add one per result.
if (mergeAllActiveQueries) {
builder.addSeries({
label: '',
scaleKey: 'y',
drawStyle: DrawStyle.Bar,
panelType: PANEL_TYPES.HISTOGRAM,
colorMapping: widget.customLegendColors ?? {},
spanGaps: false,
barWidthFactor: 1,
pointSize: 5,
lineColor: '#3f5ecc',
fillColor: '#4E74F8',
isDarkMode,
});
} else {
apiResponse.data.result.forEach((series) => {
const baseLabelName = getLabelName(
series.metric,
series.queryName || '', // query
series.legend || '',
);
const label = currentQuery
? getLegend(series, currentQuery, baseLabelName)
: baseLabelName;
builder.addSeries({
label: label,
scaleKey: 'y',
drawStyle: DrawStyle.Bar,
panelType: PANEL_TYPES.HISTOGRAM,
colorMapping: widget.customLegendColors ?? {},
spanGaps: false,
barWidthFactor: 1,
pointSize: 5,
isDarkMode,
});
});
}
return builder;
}

View File

@@ -2,12 +2,12 @@ import { useEffect, useMemo, useRef, useState } from 'react';
import TimeSeries from 'container/DashboardContainer/visualization/charts/TimeSeries/TimeSeries';
import ChartManager from 'container/DashboardContainer/visualization/components/ChartManager/ChartManager';
import { usePanelContextMenu } from 'container/DashboardContainer/visualization/hooks/usePanelContextMenu';
import { useScrollWidgetIntoView } from 'container/DashboardContainer/visualization/hooks/useScrollWidgetIntoView';
import { PanelWrapperProps } from 'container/PanelWrapper/panelWrapper.types';
import { useIsDarkMode } from 'hooks/useDarkMode';
import { useResizeObserver } from 'hooks/useDimensions';
import { LegendPosition } from 'lib/uPlotV2/components/types';
import { ContextMenu } from 'periscope/components/ContextMenu';
import { useDashboard } from 'providers/Dashboard/Dashboard';
import { useTimezone } from 'providers/Timezone';
import { MetricRangePayloadProps } from 'types/api/metrics/getQueryRange';
import uPlot from 'uplot';
@@ -26,7 +26,6 @@ function TimeSeriesPanel(props: PanelWrapperProps): JSX.Element {
isFullViewMode,
onToggleModelHandler,
} = props;
const { toScrollWidgetId, setToScrollWidgetId } = useDashboard();
const graphRef = useRef<HTMLDivElement>(null);
const [minTimeScale, setMinTimeScale] = useState<number>();
const [maxTimeScale, setMaxTimeScale] = useState<number>();
@@ -35,16 +34,7 @@ function TimeSeriesPanel(props: PanelWrapperProps): JSX.Element {
const isDarkMode = useIsDarkMode();
const { timezone } = useTimezone();
useEffect(() => {
if (toScrollWidgetId === widget.id) {
graphRef.current?.scrollIntoView({
behavior: 'smooth',
block: 'center',
});
graphRef.current?.focus();
setToScrollWidgetId('');
}
}, [toScrollWidgetId, setToScrollWidgetId, widget.id]);
useScrollWidgetIntoView(widget.id, graphRef);
useEffect((): void => {
const { startTime, endTime } = getTimeRange(queryResponse);

View File

@@ -19,9 +19,9 @@ export interface BaseConfigBuilderProps {
widget: Widgets;
apiResponse: MetricRangePayloadProps;
isDarkMode: boolean;
onClick: OnClickPluginOpts['onClick'];
onDragSelect: (startTime: number, endTime: number) => void;
timezone: Timezone;
onClick?: OnClickPluginOpts['onClick'];
onDragSelect?: (startTime: number, endTime: number) => void;
timezone?: Timezone;
panelMode: PanelMode;
panelType: PANEL_TYPES;
minTimeScale?: number;
@@ -40,8 +40,10 @@ export function buildBaseConfig({
minTimeScale,
maxTimeScale,
}: BaseConfigBuilderProps): UPlotConfigBuilder {
const tzDate = (timestamp: number): Date =>
uPlot.tzDate(new Date(timestamp * 1e3), timezone.value);
const tzDate = timezone
? (timestamp: number): Date =>
uPlot.tzDate(new Date(timestamp * 1e3), timezone.value)
: undefined;
const builder = new UPlotConfigBuilder({
onDragSelect,

View File

@@ -0,0 +1,225 @@
import {
NULL_EXPAND,
NULL_REMOVE,
NULL_RETAIN,
} from 'container/PanelWrapper/constants';
import { AlignedData } from 'uplot';
/**
* Expands contiguous runs of `null` values to the left and right of their
* original positions so that visual gaps in the series are continuous.
*
* This is used when `NULL_EXPAND` mode is selected while joining series.
*/
function propagateNullsAcrossNeighbors(
seriesValues: Array<number | null>,
nullIndices: number[],
alignedLength: number,
): void {
for (
let i = 0, currentIndex, lastExpandedNullIndex = -1;
i < nullIndices.length;
i++
) {
const nullIndex = nullIndices[i];
if (nullIndex > lastExpandedNullIndex) {
// expand left until we hit a non-null value
currentIndex = nullIndex - 1;
while (currentIndex >= 0 && seriesValues[currentIndex] == null) {
seriesValues[currentIndex--] = null;
}
// expand right until we hit a non-null value
currentIndex = nullIndex + 1;
while (currentIndex < alignedLength && seriesValues[currentIndex] == null) {
seriesValues[(lastExpandedNullIndex = currentIndex++)] = null;
}
}
}
}
/**
* Merges multiple uPlot `AlignedData` tables into a single aligned table.
*
* - Merges and sorts all distinct x-values from each table.
* - Re-aligns every series onto the merged x-axis.
* - Applies per-series null handling (`NULL_REMOVE`, `NULL_RETAIN`, `NULL_EXPAND`).
*/
/* eslint-disable sonarjs/cognitive-complexity */
export function mergeAlignedDataTables(
alignedTables: AlignedData[],
nullModes?: number[][],
): AlignedData {
let mergedXValues: Set<number>;
// eslint-disable-next-line prefer-const
mergedXValues = new Set();
// Collect all unique x-values from every table.
for (let tableIndex = 0; tableIndex < alignedTables.length; tableIndex++) {
const table = alignedTables[tableIndex];
const xValues = table[0];
const xLength = xValues.length;
for (let i = 0; i < xLength; i++) {
mergedXValues.add(xValues[i]);
}
}
// Sorted, merged x-axis used by the final result.
const alignedData: (number | null | undefined)[][] = [
Array.from(mergedXValues).sort((a, b) => a - b),
];
const alignedLength = alignedData[0].length;
// Map from x-value to its index in the merged x-axis.
const xValueToIndexMap = new Map<number, number>();
for (let i = 0; i < alignedLength; i++) {
xValueToIndexMap.set(alignedData[0][i] as number, i);
}
// Re-align all series from all tables onto the merged x-axis.
for (let tableIndex = 0; tableIndex < alignedTables.length; tableIndex++) {
const table = alignedTables[tableIndex];
const xValues = table[0];
for (let seriesIndex = 1; seriesIndex < table.length; seriesIndex++) {
const seriesValues = table[seriesIndex];
const alignedSeriesValues = Array(alignedLength).fill(undefined);
const nullHandlingMode = nullModes
? nullModes[tableIndex][seriesIndex]
: NULL_RETAIN;
const nullIndices: number[] = [];
for (let i = 0; i < seriesValues.length; i++) {
const valueAtPoint = seriesValues[i];
const alignedIndex = xValueToIndexMap.get(xValues[i]);
if (alignedIndex == null) {
continue;
}
if (valueAtPoint === null) {
if (nullHandlingMode !== NULL_REMOVE) {
alignedSeriesValues[alignedIndex] = valueAtPoint;
if (nullHandlingMode === NULL_EXPAND) {
nullIndices.push(alignedIndex);
}
}
} else {
alignedSeriesValues[alignedIndex] = valueAtPoint;
}
}
// Optionally expand nulls to visually preserve gaps.
propagateNullsAcrossNeighbors(
alignedSeriesValues,
nullIndices,
alignedLength,
);
alignedData.push(alignedSeriesValues);
}
}
return alignedData as AlignedData;
}
/**
* Builds histogram buckets from raw values.
*
* - Each value is mapped into a bucket via `getBucketForValue`.
* - Counts how many values fall into each bucket.
* - Optionally sorts buckets using the provided comparator.
*/
export function buildHistogramBuckets(
values: number[],
getBucketForValue: (value: number) => number,
sortBuckets?: ((a: number, b: number) => number) | null,
): AlignedData {
const bucketMap = new Map<number, { value: number; count: number }>();
for (let i = 0; i < values.length; i++) {
let value = values[i];
if (value != null) {
value = getBucketForValue(value);
}
const bucket = bucketMap.get(value);
if (bucket) {
bucket.count++;
} else {
bucketMap.set(value, { value, count: 1 });
}
}
const buckets = [...bucketMap.values()];
// eslint-disable-next-line @typescript-eslint/no-unused-expressions
sortBuckets && buckets.sort((a, b) => sortBuckets(a.value, b.value));
const bucketValues = Array(buckets.length);
const bucketCounts = Array(buckets.length);
for (let i = 0; i < buckets.length; i++) {
bucketValues[i] = buckets[i].value;
bucketCounts[i] = buckets[i].count;
}
return [bucketValues, bucketCounts];
}
/**
* Mutates an `AlignedData` instance, replacing all `undefined` entries
* with explicit `null` values so uPlot treats them as gaps.
*/
export function replaceUndefinedWithNullInAlignedData(
data: AlignedData,
): AlignedData {
const seriesList = data as (number | null | undefined)[][];
for (let seriesIndex = 0; seriesIndex < seriesList.length; seriesIndex++) {
for (
let pointIndex = 0;
pointIndex < seriesList[seriesIndex].length;
pointIndex++
) {
if (seriesList[seriesIndex][pointIndex] === undefined) {
seriesList[seriesIndex][pointIndex] = null;
}
}
}
return data;
}
/**
* Ensures the first histogram series has a leading "empty" bin so that
* all series line up visually when rendered as bars.
*
* - Prepends a new x-value (first x - `bucketSize`) to the first series.
* - Prepends `null` to all subsequent series at the same index.
*/
export function prependNullBinToFirstHistogramSeries(
alignedData: AlignedData,
bucketSize: number,
): void {
const seriesList = alignedData as (number | null)[][];
if (
seriesList.length > 0 &&
seriesList[0].length > 0 &&
seriesList[0][0] !== null
) {
seriesList[0].unshift(seriesList[0][0] - bucketSize);
for (let seriesIndex = 1; seriesIndex < seriesList.length; seriesIndex++) {
seriesList[seriesIndex].unshift(null);
}
}
}

View File

@@ -1,8 +1,8 @@
import { PANEL_TYPES } from 'constants/queryBuilder';
import BarPanel from 'container/DashboardContainer/visualization/panels/BarPanel/BarPanel';
import HistogramPanel from 'container/DashboardContainer/visualization/panels/HistogramPanel/HistogramPanel';
import TimeSeriesPanel from '../DashboardContainer/visualization/panels/TimeSeriesPanel/TimeSeriesPanel';
import HistogramPanelWrapper from './HistogramPanelWrapper';
import ListPanelWrapper from './ListPanelWrapper';
import PiePanelWrapper from './PiePanelWrapper';
import TablePanelWrapper from './TablePanelWrapper';
@@ -17,7 +17,7 @@ export const PanelTypeVsPanelWrapper = {
[PANEL_TYPES.EMPTY_WIDGET]: null,
[PANEL_TYPES.PIE]: PiePanelWrapper,
[PANEL_TYPES.BAR]: BarPanel,
[PANEL_TYPES.HISTOGRAM]: HistogramPanelWrapper,
[PANEL_TYPES.HISTOGRAM]: HistogramPanel,
};
export const DEFAULT_BUCKET_COUNT = 30;

View File

@@ -0,0 +1,8 @@
import { HistogramTooltipProps } from '../types';
import Tooltip from './Tooltip';
export default function HistogramTooltip(
props: HistogramTooltipProps,
): JSX.Element {
return <Tooltip {...props} showTooltipHeader={false} />;
}

View File

@@ -16,12 +16,16 @@ export default function Tooltip({
uPlotInstance,
timezone,
content,
showTooltipHeader = true,
}: TooltipProps): JSX.Element {
const isDarkMode = useIsDarkMode();
const tooltipContent = content ?? [];
const headerTitle = useMemo(() => {
if (!showTooltipHeader) {
return null;
}
const data = uPlotInstance.data;
const cursorIdx = uPlotInstance.cursor.idx;
if (cursorIdx == null) {
@@ -30,7 +34,12 @@ export default function Tooltip({
return dayjs(data[0][cursorIdx] * 1000)
.tz(timezone)
.format(DATE_TIME_FORMATS.MONTH_DATETIME_SECONDS);
}, [timezone, uPlotInstance.data, uPlotInstance.cursor.idx]);
}, [
timezone,
uPlotInstance.data,
uPlotInstance.cursor.idx,
showTooltipHeader,
]);
return (
<div
@@ -39,9 +48,11 @@ export default function Tooltip({
isDarkMode ? 'darkMode' : 'lightMode',
)}
>
<div className="uplot-tooltip-header">
<span>{headerTitle}</span>
</div>
{showTooltipHeader && (
<div className="uplot-tooltip-header">
<span>{headerTitle}</span>
</div>
)}
<div
style={{
height: Math.min(

View File

@@ -60,6 +60,7 @@ export interface TooltipRenderArgs {
}
export interface BaseTooltipProps {
showTooltipHeader?: boolean;
timezone: string;
yAxisUnit?: string;
decimalPrecision?: PrecisionOption;
@@ -74,7 +75,14 @@ export interface BarTooltipProps extends BaseTooltipProps, TooltipRenderArgs {
isStackedBarChart?: boolean;
}
export type TooltipProps = TimeSeriesTooltipProps | BarTooltipProps;
export interface HistogramTooltipProps
extends BaseTooltipProps,
TooltipRenderArgs {}
export type TooltipProps =
| TimeSeriesTooltipProps
| BarTooltipProps
| HistogramTooltipProps;
export enum LegendPosition {
BOTTOM = 'bottom',

View File

@@ -387,7 +387,7 @@ export class UPlotConfigBuilder extends ConfigBuilder<
} = this.getVisibilityResolutionState();
config.series = [
{ value: (): string => '' }, // Base series for timestamp
{ value: (): string => '', label: 'Timestamp' }, // Base series for timestamp
...this.series.map((s) => {
const series = s.getConfig();
// Stored visibility[0] is x-axis/time; data series start at visibility[1]

View File

@@ -49,7 +49,7 @@ export class UPlotSeriesBuilder extends ConfigBuilder<SeriesProps, Series> {
}: {
resolvedLineColor: string;
}): Partial<Series> {
const { lineWidth, lineStyle, lineCap } = this.props;
const { lineWidth, lineStyle, lineCap, fillColor } = this.props;
const lineConfig: Partial<Series> = {
stroke: resolvedLineColor,
width: lineWidth ?? 2,
@@ -63,8 +63,12 @@ export class UPlotSeriesBuilder extends ConfigBuilder<SeriesProps, Series> {
lineConfig.cap = lineCap;
}
if (this.props.panelType === PANEL_TYPES.BAR) {
if (fillColor) {
lineConfig.fill = fillColor;
} else if (this.props.panelType === PANEL_TYPES.BAR) {
lineConfig.fill = resolvedLineColor;
} else if (this.props.panelType === PANEL_TYPES.HISTOGRAM) {
lineConfig.fill = `${resolvedLineColor}40`;
}
return lineConfig;
@@ -147,6 +151,8 @@ export class UPlotSeriesBuilder extends ConfigBuilder<SeriesProps, Series> {
pointsConfig.show = false;
} else if (showPoints === VisibilityMode.Always) {
pointsConfig.show = true;
} else {
pointsConfig.show = false; // default to hidden
}
return pointsConfig;

View File

@@ -175,6 +175,7 @@ export interface SeriesProps extends LineConfig, PointsConfig, BarConfig {
pointsBuilder?: Series.Points.Show;
show?: boolean;
spanGaps?: boolean;
fillColor?: string;
isDarkMode?: boolean;
stepInterval?: number;
}

View File

@@ -11,22 +11,6 @@ import { Threshold } from '../hooks/types';
import { findMinMaxThresholdValues } from './threshold';
import { LogScaleLimits, RangeFunctionParams } from './types';
/**
* Rounds a number down to the nearest multiple of incr.
* Used for linear scale min so the axis starts on a clean tick.
*/
export function incrRoundDn(num: number, incr: number): number {
return Math.floor(num / incr) * incr;
}
/**
* Rounds a number up to the nearest multiple of incr.
* Used for linear scale max so the axis ends on a clean tick.
*/
export function incrRoundUp(num: number, incr: number): number {
return Math.ceil(num / incr) * incr;
}
/**
* Snaps min/max/softMin/softMax to valid log-scale values (powers of logBase).
* Only applies when distribution is logarithmic; otherwise returns limits unchanged.
@@ -213,25 +197,6 @@ function getLogScaleRange(
);
}
/**
* Snaps linear scale min down and max up to whole numbers so axis bounds are clean.
*/
function roundLinearRange(minMax: Range.MinMax): Range.MinMax {
const [currentMin, currentMax] = minMax;
let roundedMin = currentMin;
let roundedMax = currentMax;
if (roundedMin != null) {
roundedMin = incrRoundDn(roundedMin, 1);
}
if (roundedMax != null) {
roundedMax = incrRoundUp(roundedMax, 1);
}
return [roundedMin, roundedMax];
}
/**
* Snaps log-scale [min, max] to exact powers of logBase (nearest magnitude below/above).
* If min and max would be equal after snapping, max is increased by one magnitude so the range is valid.
@@ -330,7 +295,6 @@ export function createRangeFunction(
if (scale.distr === 1) {
minMax = getLinearScaleRange(minMax, params, dataMin, dataMax);
minMax = roundLinearRange(minMax);
} else if (scale.distr === 3) {
minMax = getLogScaleRange(minMax, params, dataMin, dataMax, logBase);
const logFn = scale.log === 2 ? Math.log2 : Math.log10;

View File

@@ -3,3 +3,33 @@
* Example: 1.5 → 2, 1.49 → 1
*/
export const roundHalfUp = (value: number): number => Math.floor(value + 0.5);
/**
* Rounds a number down to the nearest multiple of incr.
* Used for linear scale min so the axis starts on a clean tick.
*/
export function incrRoundDn(num: number, incr: number): number {
return Math.floor(num / incr) * incr;
}
/**
* Rounds a number up to the nearest multiple of incr.
* Used for linear scale max so the axis ends on a clean tick.
*/
export function incrRoundUp(num: number, incr: number): number {
return Math.ceil(num / incr) * incr;
}
/**
* Rounds a number to the nearest multiple of 10^dec.
* Used for decimal precision.
*/
export function roundDecimals(val: number, dec = 0): number {
if (Number.isInteger(val)) {
return val;
}
const p = 10 ** dec;
const n = val * p * (1 + Number.EPSILON);
return Math.round(n) / p;
}

View File

@@ -3,9 +3,8 @@ package flagger
import "github.com/SigNoz/signoz/pkg/types/featuretypes"
var (
FeatureUseSpanMetrics = featuretypes.MustNewName("use_span_metrics")
FeatureInterpolationEnabled = featuretypes.MustNewName("interpolation_enabled")
FeatureKafkaSpanEval = featuretypes.MustNewName("kafka_span_eval")
FeatureUseSpanMetrics = featuretypes.MustNewName("use_span_metrics")
FeatureKafkaSpanEval = featuretypes.MustNewName("kafka_span_eval")
)
func MustNewRegistry() featuretypes.Registry {
@@ -18,14 +17,6 @@ func MustNewRegistry() featuretypes.Registry {
DefaultVariant: featuretypes.MustNewName("disabled"),
Variants: featuretypes.NewBooleanVariants(),
},
&featuretypes.Feature{
Name: FeatureInterpolationEnabled,
Kind: featuretypes.KindBoolean,
Stage: featuretypes.StageExperimental,
Description: "Controls whether to enable interpolation",
DefaultVariant: featuretypes.MustNewName("disabled"),
Variants: featuretypes.NewBooleanVariants(),
},
&featuretypes.Feature{
Name: FeatureKafkaSpanEval,
Kind: featuretypes.KindBoolean,

View File

@@ -205,7 +205,7 @@ func AdjustKey(key *telemetrytypes.TelemetryFieldKey, keys map[string][]*telemet
key.Indexes = matchingKey.Indexes
key.Materialized = matchingKey.Materialized
key.JSONPlan = matchingKey.JSONPlan
return actions
} else {
// multiple matching keys, set materialized only if all the keys are materialized

View File

@@ -483,6 +483,22 @@ func (v *filterExpressionVisitor) VisitComparison(ctx *grammar.ComparisonContext
value1 := v.Visit(values[0])
value2 := v.Visit(values[1])
switch value1.(type) {
case float64:
if _, ok := value2.(float64); !ok {
v.errors = append(v.errors, fmt.Sprintf("value type mismatch for key %s: expected number for both operands", keys[0].Name))
return ""
}
case string:
if _, ok := value2.(string); !ok {
v.errors = append(v.errors, fmt.Sprintf("value type mismatch for key %s: expected string for both operands", keys[0].Name))
return ""
}
default:
v.errors = append(v.errors, fmt.Sprintf("value type mismatch for key %s: operands must be number or string", keys[0].Name))
return ""
}
var conds []string
for _, key := range keys {
condition, err := v.conditionBuilder.ConditionFor(context.Background(), key, op, []any{value1, value2}, v.builder, v.startNs, v.endNs)
@@ -855,7 +871,7 @@ func (v *filterExpressionVisitor) VisitKey(ctx *grammar.KeyContext) any {
// 1. either user meant key ( this is already handled above in fieldKeysForName )
// 2. or user meant `attribute.key` we look up in the map for all possible field keys with name 'attribute.key'
// Note:
// Note:
// If user only wants to search `attribute.key`, then they have to use `attribute.attribute.key`
// If user only wants to search `key`, then they have to use `key`
// If user wants to search both, they can use `attribute.key` and we will resolve the ambiguity

View File

@@ -375,13 +375,6 @@ func mergeAndEnsureBackwardCompatibility(ctx context.Context, logger *slog.Logge
config.Flagger.Config.Boolean[flagger.FeatureKafkaSpanEval.String()] = os.Getenv("KAFKA_SPAN_EVAL") == "true"
}
if os.Getenv("INTERPOLATION_ENABLED") != "" {
logger.WarnContext(ctx, "[Deprecated] env INTERPOLATION_ENABLED is deprecated and scheduled for removal. Please use SIGNOZ_FLAGGER_CONFIG_BOOLEAN_INTERPOLATION__ENABLED instead.")
if config.Flagger.Config.Boolean == nil {
config.Flagger.Config.Boolean = make(map[string]bool)
}
config.Flagger.Config.Boolean[flagger.FeatureInterpolationEnabled.String()] = os.Getenv("INTERPOLATION_ENABLED") == "true"
}
}
func (config Config) Collect(_ context.Context, _ valuer.UUID) (map[string]any, error) {

View File

@@ -5,6 +5,7 @@ import (
"fmt"
"log/slog"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/factory"
"github.com/SigNoz/signoz/pkg/querybuilder"
"github.com/SigNoz/signoz/pkg/telemetrymetrics"
@@ -73,7 +74,7 @@ func (b *meterQueryStatementBuilder) buildPipelineStatement(
cteArgs [][]any
)
if b.metricsStatementBuilder.CanShortCircuitDelta(query) {
if qbtypes.CanShortCircuitDelta(query.Aggregations[0]) {
// spatial_aggregation_cte directly for certain delta queries
if frag, args, err := b.buildTemporalAggDeltaFastPath(ctx, start, end, query, keys, variables); err != nil {
return nil, err
@@ -91,8 +92,9 @@ func (b *meterQueryStatementBuilder) buildPipelineStatement(
}
// spatial_aggregation_cte
frag, args := b.buildSpatialAggregationCTE(ctx, start, end, query, keys)
if frag != "" {
if frag, args, err := b.buildSpatialAggregationCTE(ctx, start, end, query, keys); err != nil {
return nil, err
} else if frag != "" {
cteFragments = append(cteFragments, frag)
cteArgs = append(cteArgs, args)
}
@@ -122,13 +124,16 @@ func (b *meterQueryStatementBuilder) buildTemporalAggDeltaFastPath(
for _, g := range query.GroupBy {
col, err := b.fm.ColumnExpressionFor(ctx, &g.TelemetryFieldKey, keys)
if err != nil {
return "", []any{}, err
return "", nil, err
}
sb.SelectMore(col)
}
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
}
@@ -150,7 +155,7 @@ func (b *meterQueryStatementBuilder) buildTemporalAggDeltaFastPath(
Variables: variables,
}, start, end)
if err != nil {
return "", []any{}, err
return "", nil, err
}
}
if filterWhere != nil {
@@ -208,8 +213,11 @@ func (b *meterQueryStatementBuilder) buildTemporalAggDelta(
}
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality,
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality,
query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
}
@@ -278,7 +286,10 @@ func (b *meterQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
}
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
baseSb.SelectMore(fmt.Sprintf("%s AS per_series_value", aggCol))
baseSb.From(fmt.Sprintf("%s.%s AS points", DBName, tbl))
@@ -315,25 +326,23 @@ func (b *meterQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
switch query.Aggregations[0].TimeAggregation {
case metrictypes.TimeAggregationRate:
rateExpr := fmt.Sprintf(telemetrymetrics.RateWithoutNegative, start, start)
wrapped := sqlbuilder.NewSelectBuilder()
wrapped.Select("ts")
for _, g := range query.GroupBy {
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", rateExpr))
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", telemetrymetrics.RateTmpl))
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
case metrictypes.TimeAggregationIncrease:
incExpr := fmt.Sprintf(telemetrymetrics.IncreaseWithoutNegative, start, start)
wrapped := sqlbuilder.NewSelectBuilder()
wrapped.Select("ts")
for _, g := range query.GroupBy {
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", incExpr))
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", telemetrymetrics.IncreaseTmpl))
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
@@ -348,7 +357,15 @@ func (b *meterQueryStatementBuilder) buildSpatialAggregationCTE(
_ uint64,
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
_ map[string][]*telemetrytypes.TelemetryFieldKey,
) (string, []any) {
) (string, []any, error) {
if query.Aggregations[0].SpaceAggregation.IsZero() {
return "", nil, errors.Newf(
errors.TypeInvalidInput,
errors.CodeInvalidInput,
"invalid space aggregation, should be one of the following: [`sum`, `avg`, `min`, `max`, `count`]",
)
}
sb := sqlbuilder.NewSelectBuilder()
sb.Select("ts")
@@ -365,5 +382,5 @@ func (b *meterQueryStatementBuilder) buildSpatialAggregationCTE(
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
q, args := sb.BuildWithFlavor(sqlbuilder.ClickHouse)
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args, nil
}

View File

@@ -51,7 +51,7 @@ func TestStatementBuilder(t *testing.T) {
},
},
expected: qbtypes.Statement{
Query: "WITH __temporal_aggregation_cte AS (SELECT ts, `service.name`, If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(1747785600000))) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(1747785600000))) OVER rate_window)) AS per_series_value FROM (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(86400)) AS ts, JSONExtractString(labels, 'service.name') AS `service.name`, max(value) AS per_series_value FROM signoz_meter.distributed_samples AS points WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? AND JSONExtractString(labels, 'service.name') = ? AND LOWER(temporality) LIKE LOWER(?) GROUP BY fingerprint, ts, `service.name` ORDER BY fingerprint, ts) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)), __spatial_aggregation_cte AS (SELECT ts, `service.name`, sum(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `service.name`) SELECT * FROM __spatial_aggregation_cte",
Query: "WITH __temporal_aggregation_cte AS (SELECT ts, `service.name`, multiIf(row_number() OVER rate_window = 1, nan, (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) / (ts - lagInFrame(ts, 1) OVER rate_window)) AS per_series_value FROM (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(86400)) AS ts, JSONExtractString(labels, 'service.name') AS `service.name`, max(value) AS per_series_value FROM signoz_meter.distributed_samples AS points WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? AND JSONExtractString(labels, 'service.name') = ? AND LOWER(temporality) LIKE LOWER(?) GROUP BY fingerprint, ts, `service.name` ORDER BY fingerprint, ts) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)), __spatial_aggregation_cte AS (SELECT ts, `service.name`, sum(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `service.name`) SELECT * FROM __spatial_aggregation_cte ORDER BY `service.name`, ts",
Args: []any{"signoz_calls_total", uint64(1747785600000), uint64(1747983420000), "cartservice", "cumulative", 0},
},
expectedErr: nil,
@@ -84,7 +84,7 @@ func TestStatementBuilder(t *testing.T) {
},
},
expected: qbtypes.Statement{
Query: "WITH __spatial_aggregation_cte AS (SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(86400)) AS ts, JSONExtractString(labels, 'service.name') AS `service.name`, sum(value)/86400 AS value FROM signoz_meter.distributed_samples AS points WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? AND JSONExtractString(labels, 'service.name') = ? AND LOWER(temporality) LIKE LOWER(?) GROUP BY ts, `service.name`) SELECT * FROM __spatial_aggregation_cte",
Query: "WITH __spatial_aggregation_cte AS (SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(86400)) AS ts, JSONExtractString(labels, 'service.name') AS `service.name`, sum(value)/86400 AS value FROM signoz_meter.distributed_samples AS points WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? AND JSONExtractString(labels, 'service.name') = ? AND LOWER(temporality) LIKE LOWER(?) GROUP BY ts, `service.name`) SELECT * FROM __spatial_aggregation_cte ORDER BY `service.name`, ts",
Args: []any{"signoz_calls_total", uint64(1747872000000), uint64(1747983420000), "cartservice", "delta"},
},
expectedErr: nil,
@@ -117,7 +117,7 @@ func TestStatementBuilder(t *testing.T) {
},
},
expected: qbtypes.Statement{
Query: "WITH __temporal_aggregation_cte AS (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(86400)) AS ts, JSONExtractString(labels, 'service.name') AS `service.name`, sum(value)/86400 AS per_series_value FROM signoz_meter.distributed_samples AS points WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? AND JSONExtractString(labels, 'service.name') = ? AND LOWER(temporality) LIKE LOWER(?) GROUP BY fingerprint, ts, `service.name` ORDER BY fingerprint, ts), __spatial_aggregation_cte AS (SELECT ts, `service.name`, avg(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `service.name`) SELECT * FROM __spatial_aggregation_cte",
Query: "WITH __temporal_aggregation_cte AS (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(86400)) AS ts, JSONExtractString(labels, 'service.name') AS `service.name`, sum(value)/86400 AS per_series_value FROM signoz_meter.distributed_samples AS points WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? AND JSONExtractString(labels, 'service.name') = ? AND LOWER(temporality) LIKE LOWER(?) GROUP BY fingerprint, ts, `service.name` ORDER BY fingerprint, ts), __spatial_aggregation_cte AS (SELECT ts, `service.name`, avg(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `service.name`) SELECT * FROM __spatial_aggregation_cte ORDER BY `service.name`, ts",
Args: []any{"signoz_calls_total", uint64(1747872000000), uint64(1747983420000), "cartservice", "delta", 0},
},
expectedErr: nil,
@@ -150,7 +150,7 @@ func TestStatementBuilder(t *testing.T) {
},
},
expected: qbtypes.Statement{
Query: "WITH __temporal_aggregation_cte AS (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(86400)) AS ts, JSONExtractString(labels, 'host.name') AS `host.name`, avg(value) AS per_series_value FROM signoz_meter.distributed_samples AS points WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? AND JSONExtractString(labels, 'host.name') = ? AND LOWER(temporality) LIKE LOWER(?) GROUP BY fingerprint, ts, `host.name` ORDER BY fingerprint, ts), __spatial_aggregation_cte AS (SELECT ts, `host.name`, sum(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `host.name`) SELECT * FROM __spatial_aggregation_cte",
Query: "WITH __temporal_aggregation_cte AS (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(86400)) AS ts, JSONExtractString(labels, 'host.name') AS `host.name`, avg(value) AS per_series_value FROM signoz_meter.distributed_samples AS points WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? AND JSONExtractString(labels, 'host.name') = ? AND LOWER(temporality) LIKE LOWER(?) GROUP BY fingerprint, ts, `host.name` ORDER BY fingerprint, ts), __spatial_aggregation_cte AS (SELECT ts, `host.name`, sum(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `host.name`) SELECT * FROM __spatial_aggregation_cte ORDER BY `host.name`, ts",
Args: []any{"system.memory.usage", uint64(1747872000000), uint64(1747983420000), "big-data-node-1", "unspecified", 0},
},
expectedErr: nil,

View File

@@ -3,6 +3,7 @@ package telemetrymeter
import (
"time"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/types/metrictypes"
)
@@ -63,7 +64,7 @@ func AggregationColumnForSamplesTable(
temporality metrictypes.Temporality,
timeAggregation metrictypes.TimeAggregation,
tableHints *metrictypes.MetricTableHints,
) string {
) (string, error) {
tableName := WhichSamplesTableToUse(start, end, metricType, timeAggregation, tableHints)
var aggregationColumn string
switch temporality {
@@ -190,5 +191,13 @@ func AggregationColumnForSamplesTable(
}
}
return aggregationColumn
if aggregationColumn == "" {
return "", errors.Newf(
errors.TypeInvalidInput,
errors.CodeInvalidInput,
"invalid time aggregation, should be one of the following: [`latest`, `sum`, `avg`, `min`, `max`, `count`, `rate`, `increase`]",
)
}
return aggregationColumn, nil
}

View File

@@ -29,13 +29,7 @@ func (c *conditionBuilder) conditionFor(
sb *sqlbuilder.SelectBuilder,
) (string, error) {
switch operator {
case qbtypes.FilterOperatorContains,
qbtypes.FilterOperatorNotContains,
qbtypes.FilterOperatorILike,
qbtypes.FilterOperatorNotILike,
qbtypes.FilterOperatorLike,
qbtypes.FilterOperatorNotLike:
if operator.IsStringSearchOperator() {
value = querybuilder.FormatValueForContains(value)
}
@@ -44,6 +38,18 @@ func (c *conditionBuilder) conditionFor(
return "", err
}
// TODO(srikanthccv): use the same data type collision handling when metrics schemas are updated
switch v := value.(type) {
case float64:
tblFieldName = fmt.Sprintf("toFloat64OrNull(%s)", tblFieldName)
case []any:
if len(v) > 0 && (operator == qbtypes.FilterOperatorBetween || operator == qbtypes.FilterOperatorNotBetween) {
if _, ok := v[0].(float64); ok {
tblFieldName = fmt.Sprintf("toFloat64OrNull(%s)", tblFieldName)
}
}
}
switch operator {
case qbtypes.FilterOperatorEqual:
return sb.E(tblFieldName, value), nil

View File

@@ -5,67 +5,27 @@ import (
"fmt"
"log/slog"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/factory"
"github.com/SigNoz/signoz/pkg/flagger"
"github.com/SigNoz/signoz/pkg/querybuilder"
"github.com/SigNoz/signoz/pkg/types/featuretypes"
"github.com/SigNoz/signoz/pkg/types/metrictypes"
qbtypes "github.com/SigNoz/signoz/pkg/types/querybuildertypes/querybuildertypesv5"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
"github.com/SigNoz/signoz/pkg/valuer"
"github.com/huandu/go-sqlbuilder"
"golang.org/x/exp/slices"
)
const (
RateWithoutNegative = `If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))`
IncreaseWithoutNegative = `If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, per_series_value, ((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window)) * (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))`
RateTmpl = `multiIf(row_number() OVER rate_window = 1, nan, (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) / (ts - lagInFrame(ts, 1) OVER rate_window))`
RateWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, IF((%s - lagInFrame(%s, 1, 0) OVER rate_window) < 0, %s / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window), (%s - lagInFrame(%s, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))) AS per_series_value`
IncreaseWithoutNegativeMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, IF((%s - lagInFrame(%s, 1, 0) OVER rate_window) < 0, %s, ((%s - lagInFrame(%s, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window)) * (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(%d))) OVER rate_window))) AS per_series_value`
OthersMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, %s) AS per_series_value`
IncreaseTmpl = `multiIf(row_number() OVER rate_window = 1, nan, (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0, per_series_value, per_series_value - lagInFrame(per_series_value, 1) OVER rate_window)`
RateWithInterpolation = `
CASE
WHEN row_number() OVER rate_window = 1 THEN
-- First row: try to interpolate using next value
CASE
WHEN leadInFrame(per_series_value, 1) OVER rate_window IS NOT NULL THEN
-- Assume linear growth to next point
(leadInFrame(per_series_value, 1) OVER rate_window - per_series_value) /
(leadInFrame(ts, 1) OVER rate_window - ts)
ELSE
0 -- No next value either, can't interpolate
END
WHEN (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0 THEN
-- Counter reset detected
per_series_value / (ts - lagInFrame(ts, 1) OVER rate_window)
ELSE
-- Normal case: calculate rate
(per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) /
(ts - lagInFrame(ts, 1) OVER rate_window)
END`
RateMultiTemporalityTmpl = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, multiIf(row_number() OVER rate_window = 1, nan, (%s - lagInFrame(%s, 1) OVER rate_window) < 0, %s / (ts - lagInFrame(ts, 1) OVER rate_window), (%s - lagInFrame(%s, 1) OVER rate_window) / (ts - lagInFrame(ts, 1) OVER rate_window))) AS per_series_value`
IncreaseWithInterpolation = `
CASE
WHEN row_number() OVER rate_window = 1 THEN
-- First row: try to interpolate using next value
CASE
WHEN leadInFrame(per_series_value, 1) OVER rate_window IS NOT NULL THEN
-- Calculate the interpolated increase for this interval
((leadInFrame(per_series_value, 1) OVER rate_window - per_series_value) /
(leadInFrame(ts, 1) OVER rate_window - ts)) *
(leadInFrame(ts, 1) OVER rate_window - ts)
ELSE
0 -- No next value either, can't interpolate
END
WHEN (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0 THEN
-- Counter reset detected: the increase is the current value
per_series_value
ELSE
-- Normal case: calculate increase
(per_series_value - lagInFrame(per_series_value, 1) OVER rate_window)
END`
IncreaseMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, multiIf(row_number() OVER rate_window = 1, nan, (%s - lagInFrame(%s, 1) OVER rate_window) < 0, %s, (%s - lagInFrame(%s, 1) OVER rate_window))) AS per_series_value`
OthersMultiTemporality = `IF(LOWER(temporality) LIKE LOWER('delta'), %s, %s) AS per_series_value`
)
type MetricQueryStatementBuilder struct {
@@ -147,54 +107,6 @@ func (b *MetricQueryStatementBuilder) Build(
return b.buildPipelineStatement(ctx, start, end, query, keys, variables)
}
// Fastpath (no fingerprint grouping)
// canShortCircuitDelta returns true if we can use the optimized query
// for the given query
// This is used to avoid the group by fingerprint thus improving the performance
// for certain queries
// cases where we can short circuit:
// 1. time aggregation = (rate|increase) and space aggregation = sum
// - rate = sum(value)/step, increase = sum(value) - sum of sums is same as sum of all values
//
// 2. time aggregation = sum and space aggregation = sum
// - sum of sums is same as sum of all values
//
// 3. time aggregation = min and space aggregation = min
// - min of mins is same as min of all values
//
// 4. time aggregation = max and space aggregation = max
// - max of maxs is same as max of all values
//
// 5. special case exphist, there is no need for per series/fingerprint aggregation
// we can directly use the quantilesDDMerge function
//
// all of this is true only for delta metrics
func (b *MetricQueryStatementBuilder) CanShortCircuitDelta(q qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation]) bool {
if q.Aggregations[0].Temporality != metrictypes.Delta {
return false
}
ta := q.Aggregations[0].TimeAggregation
sa := q.Aggregations[0].SpaceAggregation
if (ta == metrictypes.TimeAggregationRate || ta == metrictypes.TimeAggregationIncrease) && sa == metrictypes.SpaceAggregationSum {
return true
}
if ta == metrictypes.TimeAggregationSum && sa == metrictypes.SpaceAggregationSum {
return true
}
if ta == metrictypes.TimeAggregationMin && sa == metrictypes.SpaceAggregationMin {
return true
}
if ta == metrictypes.TimeAggregationMax && sa == metrictypes.SpaceAggregationMax {
return true
}
if q.Aggregations[0].Type == metrictypes.ExpHistogramType && sa.IsPercentile() {
return true
}
return false
}
func (b *MetricQueryStatementBuilder) buildPipelineStatement(
ctx context.Context,
start, end uint64,
@@ -256,10 +168,11 @@ func (b *MetricQueryStatementBuilder) buildPipelineStatement(
return nil, err
}
if b.CanShortCircuitDelta(query) {
if qbtypes.CanShortCircuitDelta(query.Aggregations[0]) {
// spatial_aggregation_cte directly for certain delta queries
frag, args := b.buildTemporalAggDeltaFastPath(start, end, query, timeSeriesCTE, timeSeriesCTEArgs)
if frag != "" {
if frag, args, err := b.buildTemporalAggDeltaFastPath(start, end, query, timeSeriesCTE, timeSeriesCTEArgs); err != nil {
return nil, err
} else if frag != "" {
cteFragments = append(cteFragments, frag)
cteArgs = append(cteArgs, args)
}
@@ -273,8 +186,9 @@ func (b *MetricQueryStatementBuilder) buildPipelineStatement(
}
// spatial_aggregation_cte
frag, args := b.buildSpatialAggregationCTE(ctx, start, end, query, keys)
if frag != "" {
if frag, args, err := b.buildSpatialAggregationCTE(ctx, start, end, query, keys); err != nil {
return nil, err
} else if frag != "" {
cteFragments = append(cteFragments, frag)
cteArgs = append(cteArgs, args)
}
@@ -294,7 +208,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDeltaFastPath(
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
timeSeriesCTE string,
timeSeriesCTEArgs []any,
) (string, []any) {
) (string, []any, error) {
stepSec := int64(query.StepInterval.Seconds())
sb := sqlbuilder.NewSelectBuilder()
@@ -307,11 +221,15 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDeltaFastPath(
sb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
aggCol := AggregationColumnForSamplesTable(
aggCol, err := AggregationColumnForSamplesTable(
start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality,
query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints,
)
if err != nil {
return "", nil, err
}
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
// TODO(srikanthccv): should it be step interval or use [start_time_unix_nano](https://github.com/open-telemetry/opentelemetry-proto/blob/d3fb76d70deb0874692bd0ebe03148580d85f3bb/opentelemetry/proto/metrics/v1/metrics.proto#L400C11-L400C31)?
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
}
@@ -334,7 +252,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDeltaFastPath(
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
q, args := sb.BuildWithFlavor(sqlbuilder.ClickHouse, timeSeriesCTEArgs...)
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args, nil
}
func (b *MetricQueryStatementBuilder) buildTimeSeriesCTE(
@@ -437,8 +355,12 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDelta(
sb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
// TODO(srikanthccv): should it be step interval or use [start_time_unix_nano](https://github.com/open-telemetry/opentelemetry-proto/blob/d3fb76d70deb0874692bd0ebe03148580d85f3bb/opentelemetry/proto/metrics/v1/metrics.proto#L400C11-L400C31)?
aggCol = fmt.Sprintf("%s/%d", aggCol, stepSec)
}
@@ -461,7 +383,7 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggDelta(
}
func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
ctx context.Context,
_ context.Context,
start, end uint64,
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
timeSeriesCTE string,
@@ -479,7 +401,10 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
baseSb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
aggCol := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggCol, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, query.Aggregations[0].Temporality, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
baseSb.SelectMore(fmt.Sprintf("%s AS per_series_value", aggCol))
tbl := WhichSamplesTableToUse(start, end, query.Aggregations[0].Type, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
@@ -496,36 +421,25 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
innerQuery, innerArgs := baseSb.BuildWithFlavor(sqlbuilder.ClickHouse, timeSeriesCTEArgs...)
// ! TODO (balanikaran) Get OrgID via function parameter instead of valuer.GenerateUUID()
interpolationEnabled := b.flagger.BooleanOrEmpty(ctx, flagger.FeatureInterpolationEnabled, featuretypes.NewFlaggerEvaluationContext(valuer.GenerateUUID()))
switch query.Aggregations[0].TimeAggregation {
case metrictypes.TimeAggregationRate:
rateExpr := fmt.Sprintf(RateWithoutNegative, start, start)
if interpolationEnabled {
rateExpr = RateWithInterpolation
}
wrapped := sqlbuilder.NewSelectBuilder()
wrapped.Select("ts")
for _, g := range query.GroupBy {
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", rateExpr))
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", RateTmpl))
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
case metrictypes.TimeAggregationIncrease:
incExpr := fmt.Sprintf(IncreaseWithoutNegative, start, start)
if interpolationEnabled {
incExpr = IncreaseWithInterpolation
}
wrapped := sqlbuilder.NewSelectBuilder()
wrapped.Select("ts")
for _, g := range query.GroupBy {
wrapped.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", incExpr))
wrapped.SelectMore(fmt.Sprintf("%s AS per_series_value", IncreaseTmpl))
wrapped.From(fmt.Sprintf("(%s) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)", innerQuery))
q, args := wrapped.BuildWithFlavor(sqlbuilder.ClickHouse, innerArgs...)
return fmt.Sprintf("__temporal_aggregation_cte AS (%s)", q), args, nil
@@ -534,7 +448,6 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggCumulativeOrUnspecified(
}
}
// because RateInterpolation is not enabled anywhere due to some gaps in the logic wrt cache handling, it hasn't been considered for the multi temporality
func (b *MetricQueryStatementBuilder) buildTemporalAggForMultipleTemporalities(
_ context.Context,
start, end uint64,
@@ -553,18 +466,32 @@ func (b *MetricQueryStatementBuilder) buildTemporalAggForMultipleTemporalities(
sb.SelectMore(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
aggForDeltaTemporality := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Delta, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggForCumulativeTemporality := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Cumulative, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
aggForDeltaTemporality, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Delta, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
aggForCumulativeTemporality, err := AggregationColumnForSamplesTable(start, end, query.Aggregations[0].Type, metrictypes.Cumulative, query.Aggregations[0].TimeAggregation, query.Aggregations[0].TableHints)
if err != nil {
return "", nil, err
}
if query.Aggregations[0].TimeAggregation == metrictypes.TimeAggregationRate {
aggForDeltaTemporality = fmt.Sprintf("%s/%d", aggForDeltaTemporality, stepSec)
}
switch query.Aggregations[0].TimeAggregation {
case metrictypes.TimeAggregationRate:
rateExpr := fmt.Sprintf(RateWithoutNegativeMultiTemporality, aggForDeltaTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, start, aggForCumulativeTemporality, aggForCumulativeTemporality, start)
rateExpr := fmt.Sprintf(RateMultiTemporalityTmpl,
aggForDeltaTemporality,
aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality,
aggForCumulativeTemporality, aggForCumulativeTemporality,
)
sb.SelectMore(rateExpr)
case metrictypes.TimeAggregationIncrease:
increaseExpr := fmt.Sprintf(IncreaseWithoutNegativeMultiTemporality, aggForDeltaTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality, start, start)
increaseExpr := fmt.Sprintf(IncreaseMultiTemporality,
aggForDeltaTemporality,
aggForCumulativeTemporality, aggForCumulativeTemporality, aggForCumulativeTemporality,
aggForCumulativeTemporality, aggForCumulativeTemporality,
)
sb.SelectMore(increaseExpr)
default:
expr := fmt.Sprintf(OthersMultiTemporality, aggForDeltaTemporality, aggForCumulativeTemporality)
@@ -592,7 +519,14 @@ func (b *MetricQueryStatementBuilder) buildSpatialAggregationCTE(
_ uint64,
query qbtypes.QueryBuilderQuery[qbtypes.MetricAggregation],
_ map[string][]*telemetrytypes.TelemetryFieldKey,
) (string, []any) {
) (string, []any, error) {
if query.Aggregations[0].SpaceAggregation.IsZero() {
return "", nil, errors.Newf(
errors.TypeInvalidInput,
errors.CodeInvalidInput,
"invalid space aggregation, should be one of the following: [`sum`, `avg`, `min`, `max`, `count`, `p50`, `p75`, `p90`, `p95`, `p99`]",
)
}
sb := sqlbuilder.NewSelectBuilder()
sb.Select("ts")
@@ -609,7 +543,7 @@ func (b *MetricQueryStatementBuilder) buildSpatialAggregationCTE(
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
q, args := sb.BuildWithFlavor(sqlbuilder.ClickHouse)
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args
return fmt.Sprintf("__spatial_aggregation_cte AS (%s)", q), args, nil
}
func (b *MetricQueryStatementBuilder) BuildFinalSelect(
@@ -641,9 +575,7 @@ func (b *MetricQueryStatementBuilder) BuildFinalSelect(
quantile,
))
sb.From("__spatial_aggregation_cte")
for _, g := range query.GroupBy {
sb.GroupBy(fmt.Sprintf("`%s`", g.TelemetryFieldKey.Name))
}
sb.GroupBy(querybuilder.GroupByKeys(query.GroupBy)...)
sb.GroupBy("ts")
if query.Having != nil && query.Having.Expression != "" {
rewriter := querybuilder.NewHavingExpressionRewriter()
@@ -659,6 +591,8 @@ func (b *MetricQueryStatementBuilder) BuildFinalSelect(
sb.Where(rewrittenExpr)
}
}
sb.OrderBy(querybuilder.GroupByKeys(query.GroupBy)...)
sb.OrderBy("ts")
q, a := sb.BuildWithFlavor(sqlbuilder.ClickHouse)
return &qbtypes.Statement{Query: combined + q, Args: append(args, a...)}, nil

View File

@@ -50,7 +50,7 @@ func TestStatementBuilder(t *testing.T) {
},
},
expected: qbtypes.Statement{
Query: "WITH __temporal_aggregation_cte AS (SELECT ts, `service.name`, If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(1747947360000))) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(1747947360000))) OVER rate_window)) AS per_series_value FROM (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(30)) AS ts, `service.name`, max(value) AS per_series_value FROM signoz_metrics.distributed_samples_v4 AS points INNER JOIN (SELECT fingerprint, JSONExtractString(labels, 'service.name') AS `service.name` FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli <= ? AND LOWER(temporality) LIKE LOWER(?) AND __normalized = ? AND JSONExtractString(labels, 'service.name') = ? GROUP BY fingerprint, `service.name`) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? GROUP BY fingerprint, ts, `service.name` ORDER BY fingerprint, ts) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)), __spatial_aggregation_cte AS (SELECT ts, `service.name`, sum(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `service.name`) SELECT * FROM __spatial_aggregation_cte",
Query: "WITH __temporal_aggregation_cte AS (SELECT ts, `service.name`, multiIf(row_number() OVER rate_window = 1, nan, (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) / (ts - lagInFrame(ts, 1) OVER rate_window)) AS per_series_value FROM (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(30)) AS ts, `service.name`, max(value) AS per_series_value FROM signoz_metrics.distributed_samples_v4 AS points INNER JOIN (SELECT fingerprint, JSONExtractString(labels, 'service.name') AS `service.name` FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli <= ? AND LOWER(temporality) LIKE LOWER(?) AND __normalized = ? AND JSONExtractString(labels, 'service.name') = ? GROUP BY fingerprint, `service.name`) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? GROUP BY fingerprint, ts, `service.name` ORDER BY fingerprint, ts) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)), __spatial_aggregation_cte AS (SELECT ts, `service.name`, sum(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `service.name`) SELECT * FROM __spatial_aggregation_cte ORDER BY `service.name`, ts",
Args: []any{"signoz_calls_total", uint64(1747936800000), uint64(1747983420000), "cumulative", false, "cartservice", "signoz_calls_total", uint64(1747947360000), uint64(1747983420000), 0},
},
expectedErr: nil,
@@ -83,7 +83,7 @@ func TestStatementBuilder(t *testing.T) {
},
},
expected: qbtypes.Statement{
Query: "WITH __temporal_aggregation_cte AS (SELECT ts, `service.name`, If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(1747947360000))) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(1747947360000))) OVER rate_window)) AS per_series_value FROM (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(30)) AS ts, `service.name`, max(value) AS per_series_value FROM signoz_metrics.distributed_samples_v4 AS points INNER JOIN (SELECT fingerprint, JSONExtractString(labels, 'service.name') AS `service.name` FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli <= ? AND LOWER(temporality) LIKE LOWER(?) AND __normalized = ? AND (match(JSONExtractString(labels, 'materialized.key.name'), ?) OR JSONExtractString(labels, 'service.name') = ?) GROUP BY fingerprint, `service.name`) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? GROUP BY fingerprint, ts, `service.name` ORDER BY fingerprint, ts) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)), __spatial_aggregation_cte AS (SELECT ts, `service.name`, sum(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `service.name`) SELECT * FROM __spatial_aggregation_cte",
Query: "WITH __temporal_aggregation_cte AS (SELECT ts, `service.name`, multiIf(row_number() OVER rate_window = 1, nan, (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) / (ts - lagInFrame(ts, 1) OVER rate_window)) AS per_series_value FROM (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(30)) AS ts, `service.name`, max(value) AS per_series_value FROM signoz_metrics.distributed_samples_v4 AS points INNER JOIN (SELECT fingerprint, JSONExtractString(labels, 'service.name') AS `service.name` FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli <= ? AND LOWER(temporality) LIKE LOWER(?) AND __normalized = ? AND (match(JSONExtractString(labels, 'materialized.key.name'), ?) OR JSONExtractString(labels, 'service.name') = ?) GROUP BY fingerprint, `service.name`) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? GROUP BY fingerprint, ts, `service.name` ORDER BY fingerprint, ts) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)), __spatial_aggregation_cte AS (SELECT ts, `service.name`, sum(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `service.name`) SELECT * FROM __spatial_aggregation_cte ORDER BY `service.name`, ts",
Args: []any{"signoz_calls_total", uint64(1747936800000), uint64(1747983420000), "cumulative", false, "cartservice", "cartservice", "signoz_calls_total", uint64(1747947360000), uint64(1747983420000), 0},
},
expectedErr: nil,
@@ -116,7 +116,7 @@ func TestStatementBuilder(t *testing.T) {
},
},
expected: qbtypes.Statement{
Query: "WITH __spatial_aggregation_cte AS (SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(30)) AS ts, `service.name`, sum(value)/30 AS value FROM signoz_metrics.distributed_samples_v4 AS points INNER JOIN (SELECT fingerprint, JSONExtractString(labels, 'service.name') AS `service.name` FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli <= ? AND LOWER(temporality) LIKE LOWER(?) AND __normalized = ? AND JSONExtractString(labels, 'service.name') = ? GROUP BY fingerprint, `service.name`) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? GROUP BY ts, `service.name`) SELECT * FROM __spatial_aggregation_cte",
Query: "WITH __spatial_aggregation_cte AS (SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(30)) AS ts, `service.name`, sum(value)/30 AS value FROM signoz_metrics.distributed_samples_v4 AS points INNER JOIN (SELECT fingerprint, JSONExtractString(labels, 'service.name') AS `service.name` FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli <= ? AND LOWER(temporality) LIKE LOWER(?) AND __normalized = ? AND JSONExtractString(labels, 'service.name') = ? GROUP BY fingerprint, `service.name`) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? GROUP BY ts, `service.name`) SELECT * FROM __spatial_aggregation_cte ORDER BY `service.name`, ts",
Args: []any{"signoz_calls_total", uint64(1747936800000), uint64(1747983420000), "delta", false, "cartservice", "signoz_calls_total", uint64(1747947390000), uint64(1747983420000)},
},
expectedErr: nil,
@@ -148,7 +148,7 @@ func TestStatementBuilder(t *testing.T) {
},
},
expected: qbtypes.Statement{
Query: "WITH __spatial_aggregation_cte AS (SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(30)) AS ts, `service.name`, `le`, sum(value)/30 AS value FROM signoz_metrics.distributed_samples_v4 AS points INNER JOIN (SELECT fingerprint, JSONExtractString(labels, 'service.name') AS `service.name`, JSONExtractString(labels, 'le') AS `le` FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli <= ? AND LOWER(temporality) LIKE LOWER(?) AND __normalized = ? AND JSONExtractString(labels, 'service.name') = ? GROUP BY fingerprint, `service.name`, `le`) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? GROUP BY ts, `service.name`, `le`) SELECT ts, `service.name`, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.950) AS value FROM __spatial_aggregation_cte GROUP BY `service.name`, ts",
Query: "WITH __spatial_aggregation_cte AS (SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(30)) AS ts, `service.name`, `le`, sum(value)/30 AS value FROM signoz_metrics.distributed_samples_v4 AS points INNER JOIN (SELECT fingerprint, JSONExtractString(labels, 'service.name') AS `service.name`, JSONExtractString(labels, 'le') AS `le` FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli <= ? AND LOWER(temporality) LIKE LOWER(?) AND __normalized = ? AND JSONExtractString(labels, 'service.name') = ? GROUP BY fingerprint, `service.name`, `le`) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? GROUP BY ts, `service.name`, `le`) SELECT ts, `service.name`, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.950) AS value FROM __spatial_aggregation_cte GROUP BY `service.name`, ts ORDER BY `service.name`, ts",
Args: []any{"signoz_latency", uint64(1747936800000), uint64(1747983420000), "delta", false, "cartservice", "signoz_latency", uint64(1747947390000), uint64(1747983420000)},
},
expectedErr: nil,
@@ -181,7 +181,7 @@ func TestStatementBuilder(t *testing.T) {
},
},
expected: qbtypes.Statement{
Query: "WITH __temporal_aggregation_cte AS (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(30)) AS ts, `host.name`, avg(value) AS per_series_value FROM signoz_metrics.distributed_samples_v4 AS points INNER JOIN (SELECT fingerprint, JSONExtractString(labels, 'host.name') AS `host.name` FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli <= ? AND LOWER(temporality) LIKE LOWER(?) AND __normalized = ? AND JSONExtractString(labels, 'host.name') = ? GROUP BY fingerprint, `host.name`) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? GROUP BY fingerprint, ts, `host.name` ORDER BY fingerprint, ts), __spatial_aggregation_cte AS (SELECT ts, `host.name`, sum(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `host.name`) SELECT * FROM __spatial_aggregation_cte",
Query: "WITH __temporal_aggregation_cte AS (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(30)) AS ts, `host.name`, avg(value) AS per_series_value FROM signoz_metrics.distributed_samples_v4 AS points INNER JOIN (SELECT fingerprint, JSONExtractString(labels, 'host.name') AS `host.name` FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli <= ? AND LOWER(temporality) LIKE LOWER(?) AND __normalized = ? AND JSONExtractString(labels, 'host.name') = ? GROUP BY fingerprint, `host.name`) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? GROUP BY fingerprint, ts, `host.name` ORDER BY fingerprint, ts), __spatial_aggregation_cte AS (SELECT ts, `host.name`, sum(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `host.name`) SELECT * FROM __spatial_aggregation_cte ORDER BY `host.name`, ts",
Args: []any{"system.memory.usage", uint64(1747936800000), uint64(1747983420000), "unspecified", false, "big-data-node-1", "system.memory.usage", uint64(1747947390000), uint64(1747983420000), 0},
},
expectedErr: nil,
@@ -210,7 +210,7 @@ func TestStatementBuilder(t *testing.T) {
},
},
expected: qbtypes.Statement{
Query: "WITH __temporal_aggregation_cte AS (SELECT ts, `service.name`, `le`, If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(1747947390000))) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDateTime(fromUnixTimestamp64Milli(1747947390000))) OVER rate_window)) AS per_series_value FROM (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(30)) AS ts, `service.name`, `le`, max(value) AS per_series_value FROM signoz_metrics.distributed_samples_v4 AS points INNER JOIN (SELECT fingerprint, JSONExtractString(labels, 'service.name') AS `service.name`, JSONExtractString(labels, 'le') AS `le` FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli <= ? AND LOWER(temporality) LIKE LOWER(?) AND __normalized = ? GROUP BY fingerprint, `service.name`, `le`) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? GROUP BY fingerprint, ts, `service.name`, `le` ORDER BY fingerprint, ts) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)), __spatial_aggregation_cte AS (SELECT ts, `service.name`, `le`, sum(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `service.name`, `le`) SELECT ts, `service.name`, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.950) AS value FROM __spatial_aggregation_cte GROUP BY `service.name`, ts",
Query: "WITH __temporal_aggregation_cte AS (SELECT ts, `service.name`, `le`, multiIf(row_number() OVER rate_window = 1, nan, (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) < 0, per_series_value / (ts - lagInFrame(ts, 1) OVER rate_window), (per_series_value - lagInFrame(per_series_value, 1) OVER rate_window) / (ts - lagInFrame(ts, 1) OVER rate_window)) AS per_series_value FROM (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(30)) AS ts, `service.name`, `le`, max(value) AS per_series_value FROM signoz_metrics.distributed_samples_v4 AS points INNER JOIN (SELECT fingerprint, JSONExtractString(labels, 'service.name') AS `service.name`, JSONExtractString(labels, 'le') AS `le` FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli <= ? AND LOWER(temporality) LIKE LOWER(?) AND __normalized = ? GROUP BY fingerprint, `service.name`, `le`) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint WHERE metric_name IN (?) AND unix_milli >= ? AND unix_milli < ? GROUP BY fingerprint, ts, `service.name`, `le` ORDER BY fingerprint, ts) WINDOW rate_window AS (PARTITION BY fingerprint ORDER BY fingerprint, ts)), __spatial_aggregation_cte AS (SELECT ts, `service.name`, `le`, sum(per_series_value) AS value FROM __temporal_aggregation_cte WHERE isNaN(per_series_value) = ? GROUP BY ts, `service.name`, `le`) SELECT ts, `service.name`, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.950) AS value FROM __spatial_aggregation_cte GROUP BY `service.name`, ts ORDER BY `service.name`, ts",
Args: []any{"http_server_duration_bucket", uint64(1747936800000), uint64(1747983420000), "cumulative", false, "http_server_duration_bucket", uint64(1747947390000), uint64(1747983420000), 0},
},
expectedErr: nil,

View File

@@ -3,6 +3,7 @@ package telemetrymetrics
import (
"time"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/types/metrictypes"
)
@@ -168,7 +169,7 @@ func AggregationColumnForSamplesTable(
temporality metrictypes.Temporality,
timeAggregation metrictypes.TimeAggregation,
tableHints *metrictypes.MetricTableHints,
) string {
) (string, error) {
tableName := WhichSamplesTableToUse(start, end, metricType, timeAggregation, tableHints)
var aggregationColumn string
switch temporality {
@@ -298,5 +299,12 @@ func AggregationColumnForSamplesTable(
}
}
}
return aggregationColumn
if aggregationColumn == "" {
return "", errors.Newf(
errors.TypeInvalidInput,
errors.CodeInvalidInput,
"invalid time aggregation, should be one of the following: [`latest`, `sum`, `avg`, `min`, `max`, `count`, `rate`, `increase`]",
)
}
return aggregationColumn, nil
}

View File

@@ -35,13 +35,7 @@ func (c *conditionBuilder) conditionFor(
sb *sqlbuilder.SelectBuilder,
) (string, error) {
switch operator {
case qbtypes.FilterOperatorContains,
qbtypes.FilterOperatorNotContains,
qbtypes.FilterOperatorILike,
qbtypes.FilterOperatorNotILike,
qbtypes.FilterOperatorLike,
qbtypes.FilterOperatorNotLike:
if operator.IsStringSearchOperator() {
value = querybuilder.FormatValueForContains(value)
}

View File

@@ -152,7 +152,9 @@ func (f FilterOperator) IsStringSearchOperator() bool {
FilterOperatorILike,
FilterOperatorNotILike,
FilterOperatorLike,
FilterOperatorNotLike:
FilterOperatorNotLike,
FilterOperatorRegexp,
FilterOperatorNotRegexp:
return true
default:
return false

View File

@@ -3,6 +3,7 @@ package querybuildertypesv5
import (
"fmt"
"github.com/SigNoz/signoz/pkg/types/metrictypes"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
)
@@ -174,3 +175,54 @@ func (q *QueryBuilderQuery[T]) Normalize() {
}
}
// Fastpath (no fingerprint grouping)
// canShortCircuitDelta returns true if we can use the optimized query
// for the given query
// This is used to avoid the group by fingerprint thus improving the performance
// for certain queries
// cases where we can short circuit:
// 1. time aggregation = (rate|increase) and space aggregation = sum
// - rate = sum(value)/step, increase = sum(value) - sum of sums is same as sum of all values
//
// 2. time aggregation = sum and space aggregation = sum
// - sum of sums is same as sum of all values
//
// 3. time aggregation = min and space aggregation = min
// - min of mins is same as min of all values
//
// 4. time aggregation = max and space aggregation = max
// - max of maxs is same as max of all values
//
// 5. special case exphist, there is no need for per series/fingerprint aggregation
// we can directly use the quantilesDDMerge function
//
// all of this is true only for delta metrics
func CanShortCircuitDelta(metricAgg MetricAggregation) bool {
if metricAgg.Temporality != metrictypes.Delta {
return false
}
ta := metricAgg.TimeAggregation
sa := metricAgg.SpaceAggregation
if (ta == metrictypes.TimeAggregationRate || ta == metrictypes.TimeAggregationIncrease) &&
sa == metrictypes.SpaceAggregationSum {
return true
}
if ta == metrictypes.TimeAggregationSum && sa == metrictypes.SpaceAggregationSum {
return true
}
if ta == metrictypes.TimeAggregationMin && sa == metrictypes.SpaceAggregationMin {
return true
}
if ta == metrictypes.TimeAggregationMax && sa == metrictypes.SpaceAggregationMax {
return true
}
if metricAgg.Type == metrictypes.ExpHistogramType && sa.IsPercentile() {
return true
}
return false
}

View File

@@ -12,6 +12,7 @@ import (
var (
ErrColumnNotFound = errors.Newf(errors.TypeNotFound, errors.CodeNotFound, "field not found")
ErrBetweenValues = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "(not) between operator requires two values")
ErrBetweenValuesType = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "(not) between operator requires two values of the number type")
ErrInValues = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "(not) in operator requires a list of values")
ErrUnsupportedOperator = errors.Newf(errors.TypeInvalidInput, errors.CodeInvalidInput, "unsupported operator")
)

View File

@@ -75,7 +75,7 @@ func (q *QueryEnvelope) UnmarshalJSON(data []byte) error {
case QueryTypeFormula:
var spec QueryBuilderFormula
// TODO: use json.Unmarshal here after implementing custom unmarshaler for QueryBuilderFormula
// TODO(srikanthccv): use json.Unmarshal here after implementing custom unmarshaler for QueryBuilderFormula
if err := UnmarshalJSONWithContext(shadow.Spec, &spec, "formula spec"); err != nil {
return wrapUnmarshalError(err, "invalid formula spec: %v", err)
}
@@ -83,7 +83,7 @@ func (q *QueryEnvelope) UnmarshalJSON(data []byte) error {
case QueryTypeJoin:
var spec QueryBuilderJoin
// TODO: use json.Unmarshal here after implementing custom unmarshaler for QueryBuilderJoin
// TODO(srikanthccv): use json.Unmarshal here after implementing custom unmarshaler for QueryBuilderJoin
if err := UnmarshalJSONWithContext(shadow.Spec, &spec, "join spec"); err != nil {
return wrapUnmarshalError(err, "invalid join spec: %v", err)
}
@@ -98,7 +98,7 @@ func (q *QueryEnvelope) UnmarshalJSON(data []byte) error {
case QueryTypePromQL:
var spec PromQuery
// TODO: use json.Unmarshal here after implementing custom unmarshaler for PromQuery
// TODO(srikanthccv): use json.Unmarshal here after implementing custom unmarshaler for PromQuery
if err := UnmarshalJSONWithContext(shadow.Spec, &spec, "PromQL spec"); err != nil {
return wrapUnmarshalError(err, "invalid PromQL spec: %v", err)
}
@@ -106,7 +106,7 @@ func (q *QueryEnvelope) UnmarshalJSON(data []byte) error {
case QueryTypeClickHouseSQL:
var spec ClickHouseQuery
// TODO: use json.Unmarshal here after implementing custom unmarshaler for ClickHouseQuery
// TODO(srikanthccv): use json.Unmarshal here after implementing custom unmarshaler for ClickHouseQuery
if err := UnmarshalJSONWithContext(shadow.Spec, &spec, "ClickHouse SQL spec"); err != nil {
return wrapUnmarshalError(err, "invalid ClickHouse SQL spec: %v", err)
}
@@ -439,7 +439,7 @@ func (r *QueryRangeRequest) GetQueriesSupportingZeroDefault() map[string]bool {
expr = strings.ToLower(expr)
// only pure additive/counting operations should default to zero,
// while statistical/analytical operations should show gaps when there's no data to analyze.
// TODO: use newExprVisitor for getting the function used in the expression
// TODO(srikanthccv): use newExprVisitor for getting the function used in the expression
if strings.HasPrefix(expr, "count(") ||
strings.HasPrefix(expr, "count_distinct(") ||
strings.HasPrefix(expr, "sum(") ||

View File

@@ -21,3 +21,12 @@ var (
// []Bucket (struct{Lower,Upper,Count float64}), example: histogram
RequestTypeDistribution = RequestType{valuer.NewString("distribution")}
)
// IsAggregation returns true for request types that produce aggregated results
// (time_series, scalar, distribution). For these types, fields like groupBy,
// having, aggregations, and orderBy (with aggregation key validation) are meaningful.
// For non-aggregation types (raw, raw_stream, trace), those fields are ignored
// and don't need to be validated.
func (r RequestType) IsAggregation() bool {
return r == RequestTypeTimeSeries || r == RequestTypeScalar || r == RequestTypeDistribution
}

View File

@@ -10,54 +10,78 @@ import (
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
)
// queryName returns the name from any query envelope spec type.
func (e QueryEnvelope) queryName() string {
switch spec := e.Spec.(type) {
case QueryBuilderQuery[TraceAggregation]:
return spec.Name
case QueryBuilderQuery[LogAggregation]:
return spec.Name
case QueryBuilderQuery[MetricAggregation]:
return spec.Name
case QueryBuilderFormula:
return spec.Name
case QueryBuilderTraceOperator:
return spec.Name
case QueryBuilderJoin:
return spec.Name
case PromQuery:
return spec.Name
case ClickHouseQuery:
return spec.Name
}
return ""
}
// isDisabled returns the disabled status from any query envelope spec type.
func (e QueryEnvelope) isDisabled() bool {
switch spec := e.Spec.(type) {
case QueryBuilderQuery[TraceAggregation]:
return spec.Disabled
case QueryBuilderQuery[LogAggregation]:
return spec.Disabled
case QueryBuilderQuery[MetricAggregation]:
return spec.Disabled
case QueryBuilderFormula:
return spec.Disabled
case QueryBuilderTraceOperator:
return spec.Disabled
case QueryBuilderJoin:
return spec.Disabled
case PromQuery:
return spec.Disabled
case ClickHouseQuery:
return spec.Disabled
}
return false
}
// getQueryIdentifier returns a friendly identifier for a query based on its type and name/content
func getQueryIdentifier(envelope QueryEnvelope, index int) string {
name := envelope.queryName()
var typeLabel string
switch envelope.Type {
case QueryTypeBuilder, QueryTypeSubQuery:
switch spec := envelope.Spec.(type) {
case QueryBuilderQuery[TraceAggregation]:
if spec.Name != "" {
return fmt.Sprintf("query '%s'", spec.Name)
}
return fmt.Sprintf("trace query at position %d", index+1)
case QueryBuilderQuery[LogAggregation]:
if spec.Name != "" {
return fmt.Sprintf("query '%s'", spec.Name)
}
return fmt.Sprintf("log query at position %d", index+1)
case QueryBuilderQuery[MetricAggregation]:
if spec.Name != "" {
return fmt.Sprintf("query '%s'", spec.Name)
}
return fmt.Sprintf("metric query at position %d", index+1)
}
typeLabel = "query"
case QueryTypeFormula:
if spec, ok := envelope.Spec.(QueryBuilderFormula); ok && spec.Name != "" {
return fmt.Sprintf("formula '%s'", spec.Name)
}
return fmt.Sprintf("formula at position %d", index+1)
typeLabel = "formula"
case QueryTypeTraceOperator:
if spec, ok := envelope.Spec.(QueryBuilderTraceOperator); ok && spec.Name != "" {
return fmt.Sprintf("trace operator '%s'", spec.Name)
}
return fmt.Sprintf("trace operator at position %d", index+1)
typeLabel = "trace operator"
case QueryTypeJoin:
if spec, ok := envelope.Spec.(QueryBuilderJoin); ok && spec.Name != "" {
return fmt.Sprintf("join '%s'", spec.Name)
}
return fmt.Sprintf("join at position %d", index+1)
typeLabel = "join"
case QueryTypePromQL:
if spec, ok := envelope.Spec.(PromQuery); ok && spec.Name != "" {
return fmt.Sprintf("PromQL query '%s'", spec.Name)
}
return fmt.Sprintf("PromQL query at position %d", index+1)
typeLabel = "PromQL query"
case QueryTypeClickHouseSQL:
if spec, ok := envelope.Spec.(ClickHouseQuery); ok && spec.Name != "" {
return fmt.Sprintf("ClickHouse query '%s'", spec.Name)
}
return fmt.Sprintf("ClickHouse query at position %d", index+1)
typeLabel = "ClickHouse query"
default:
typeLabel = "query"
}
return fmt.Sprintf("query at position %d", index+1)
if name != "" {
return fmt.Sprintf("%s '%s'", typeLabel, name)
}
return fmt.Sprintf("%s at position %d", typeLabel, index+1)
}
const (
@@ -72,11 +96,12 @@ func (q *QueryBuilderQuery[T]) Validate(requestType RequestType) error {
return err
}
// Validate aggregations only for non-raw request types
if requestType != RequestTypeRaw && requestType != RequestTypeRawStream && requestType != RequestTypeTrace {
if err := q.validateAggregations(); err != nil {
return err
}
if err := q.validateAggregations(requestType); err != nil {
return err
}
if err := q.validateGroupBy(requestType); err != nil {
return err
}
// Validate limit and pagination
@@ -94,32 +119,23 @@ func (q *QueryBuilderQuery[T]) Validate(requestType RequestType) error {
return err
}
if requestType != RequestTypeRaw && requestType != RequestTypeTrace && len(q.Aggregations) > 0 {
if err := q.validateOrderByForAggregation(); err != nil {
return err
}
} else {
if err := q.validateOrderBy(); err != nil {
return err
}
if err := q.validateOrderBy(requestType); err != nil {
return err
}
if requestType != RequestTypeRaw && requestType != RequestTypeTrace {
if err := q.validateHaving(); err != nil {
return err
}
}
if requestType == RequestTypeRaw {
if err := q.validateSelectFields(); err != nil {
return err
}
if err := q.validateSelectFields(requestType); err != nil {
return err
}
return nil
}
func (q *QueryBuilderQuery[T]) validateSelectFields() error {
func (q *QueryBuilderQuery[T]) validateSelectFields(requestType RequestType) error {
// selectFields don't apply to aggregation queries, skip validation
if requestType.IsAggregation() {
return nil
}
// isRoot and isEntryPoint are returned by the Metadata API, so if someone sends them, we have to reject the request.
for _, v := range q.SelectFields {
if v.Name == "isRoot" || v.Name == "isEntryPoint" {
@@ -132,6 +148,21 @@ func (q *QueryBuilderQuery[T]) validateSelectFields() error {
return nil
}
func (q *QueryBuilderQuery[T]) validateGroupBy(requestType RequestType) error {
// groupBy doesn't apply to non-aggregation queries, skip validation
if !requestType.IsAggregation() {
return nil
}
for idx, item := range q.GroupBy {
if item.TelemetryFieldKey.Name == "" {
return errors.NewInvalidInputf(
errors.CodeInvalidInput, "invalid empty key name for group by at index %d", idx,
)
}
}
return nil
}
func (q *QueryBuilderQuery[T]) validateSignal() error {
// Signal validation is handled during unmarshaling in req.go
// Valid signals are: metrics, traces, logs
@@ -152,7 +183,12 @@ func (q *QueryBuilderQuery[T]) validateSignal() error {
}
}
func (q *QueryBuilderQuery[T]) validateAggregations() error {
func (q *QueryBuilderQuery[T]) validateAggregations(requestType RequestType) error {
// aggregations don't apply to non-aggregation queries, skip validation
if !requestType.IsAggregation() {
return nil
}
// At least one aggregation required for non-disabled queries
if len(q.Aggregations) == 0 && !q.Disabled {
return errors.NewInvalidInputf(
@@ -179,14 +215,6 @@ func (q *QueryBuilderQuery[T]) validateAggregations() error {
aggId,
)
}
// Validate metric-specific aggregations
if err := validateMetricAggregation(v); err != nil {
aggId := fmt.Sprintf("aggregation #%d", i+1)
if q.Name != "" {
aggId = fmt.Sprintf("aggregation #%d in query '%s'", i+1, q.Name)
}
return wrapValidationError(err, aggId, "invalid metric %s: %s")
}
case TraceAggregation:
if v.Expression == "" {
aggId := fmt.Sprintf("aggregation #%d", i+1)
@@ -301,7 +329,7 @@ func (q *QueryBuilderQuery[T]) validateSecondaryAggregations() error {
return nil
}
func (q *QueryBuilderQuery[T]) validateOrderBy() error {
func (q *QueryBuilderQuery[T]) validateOrderBy(requestType RequestType) error {
for i, order := range q.Order {
// Direction validation is handled by the OrderDirection type
if order.Direction != OrderDirectionAsc && order.Direction != OrderDirectionDesc {
@@ -319,6 +347,12 @@ func (q *QueryBuilderQuery[T]) validateOrderBy() error {
)
}
}
// aggregation-specific order key validation only applies to aggregation queries
if requestType.IsAggregation() {
return q.validateOrderByForAggregation()
}
return nil
}
@@ -328,10 +362,6 @@ func (q *QueryBuilderQuery[T]) validateOrderBy() error {
// 2. Aggregation expressions or aliases
// 3. Aggregation index (0, 1, 2, etc.)
func (q *QueryBuilderQuery[T]) validateOrderByForAggregation() error {
// First validate basic order by constraints
if err := q.validateOrderBy(); err != nil {
return err
}
validOrderKeys := make(map[string]bool)
@@ -401,22 +431,6 @@ func (q *QueryBuilderQuery[T]) validateOrderByForAggregation() error {
return nil
}
func (q *QueryBuilderQuery[T]) validateHaving() error {
if q.Having == nil || q.Having.Expression == "" {
return nil
}
// ensure that having is only used with aggregations
if len(q.Aggregations) == 0 {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"having clause can only be used with aggregation queries. Use `filter.expression` instead",
)
}
return nil
}
// ValidateQueryRangeRequest validates the entire query range request
func (r *QueryRangeRequest) Validate() error {
// Validate time range
@@ -456,236 +470,20 @@ func (r *QueryRangeRequest) Validate() error {
// validateAllQueriesNotDisabled validates that at least one query in the composite query is enabled
func (r *QueryRangeRequest) validateAllQueriesNotDisabled() error {
allDisabled := true
for _, envelope := range r.CompositeQuery.Queries {
switch envelope.Type {
case QueryTypeBuilder, QueryTypeSubQuery:
switch spec := envelope.Spec.(type) {
case QueryBuilderQuery[TraceAggregation]:
if !spec.Disabled {
allDisabled = false
}
case QueryBuilderQuery[LogAggregation]:
if !spec.Disabled {
allDisabled = false
}
case QueryBuilderQuery[MetricAggregation]:
if !spec.Disabled {
allDisabled = false
}
}
case QueryTypeFormula:
if spec, ok := envelope.Spec.(QueryBuilderFormula); ok && !spec.Disabled {
allDisabled = false
}
case QueryTypeTraceOperator:
if spec, ok := envelope.Spec.(QueryBuilderTraceOperator); ok && !spec.Disabled {
allDisabled = false
}
case QueryTypeJoin:
if spec, ok := envelope.Spec.(QueryBuilderJoin); ok && !spec.Disabled {
allDisabled = false
}
case QueryTypePromQL:
if spec, ok := envelope.Spec.(PromQuery); ok && !spec.Disabled {
allDisabled = false
}
case QueryTypeClickHouseSQL:
if spec, ok := envelope.Spec.(ClickHouseQuery); ok && !spec.Disabled {
allDisabled = false
}
}
// Early exit if we find at least one enabled query
if !allDisabled {
break
if !envelope.isDisabled() {
return nil
}
}
if allDisabled {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"all queries are disabled - at least one query must be enabled",
)
}
return nil
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"all queries are disabled - at least one query must be enabled",
)
}
func (r *QueryRangeRequest) validateCompositeQuery() error {
// Validate queries in composite query
if len(r.CompositeQuery.Queries) == 0 {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"at least one query is required",
)
}
// Track query names for uniqueness (only for non-formula queries)
queryNames := make(map[string]bool)
// Validate each query based on its type
for i, envelope := range r.CompositeQuery.Queries {
switch envelope.Type {
case QueryTypeBuilder, QueryTypeSubQuery:
// Validate based on the concrete type
switch spec := envelope.Spec.(type) {
case QueryBuilderQuery[TraceAggregation]:
if err := spec.Validate(r.RequestType); err != nil {
queryId := getQueryIdentifier(envelope, i)
return wrapValidationError(err, queryId, "invalid %s: %s")
}
// Check name uniqueness for non-formula context
if spec.Name != "" {
if queryNames[spec.Name] {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"duplicate query name '%s'",
spec.Name,
)
}
queryNames[spec.Name] = true
}
case QueryBuilderQuery[LogAggregation]:
if err := spec.Validate(r.RequestType); err != nil {
queryId := getQueryIdentifier(envelope, i)
return wrapValidationError(err, queryId, "invalid %s: %s")
}
// Check name uniqueness for non-formula context
if spec.Name != "" {
if queryNames[spec.Name] {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"duplicate query name '%s'",
spec.Name,
)
}
queryNames[spec.Name] = true
}
case QueryBuilderQuery[MetricAggregation]:
if err := spec.Validate(r.RequestType); err != nil {
queryId := getQueryIdentifier(envelope, i)
return wrapValidationError(err, queryId, "invalid %s: %s")
}
// Check name uniqueness for non-formula context
if spec.Name != "" {
if queryNames[spec.Name] {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"duplicate query name '%s'",
spec.Name,
)
}
queryNames[spec.Name] = true
}
default:
queryId := getQueryIdentifier(envelope, i)
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"unknown spec type for %s",
queryId,
)
}
case QueryTypeFormula:
// Formula validation is handled separately
spec, ok := envelope.Spec.(QueryBuilderFormula)
if !ok {
queryId := getQueryIdentifier(envelope, i)
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"invalid spec for %s",
queryId,
)
}
if spec.Expression == "" {
queryId := getQueryIdentifier(envelope, i)
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"expression is required for %s",
queryId,
)
}
case QueryTypeJoin:
// Join validation is handled separately
_, ok := envelope.Spec.(QueryBuilderJoin)
if !ok {
queryId := getQueryIdentifier(envelope, i)
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"invalid spec for %s",
queryId,
)
}
case QueryTypeTraceOperator:
spec, ok := envelope.Spec.(QueryBuilderTraceOperator)
if !ok {
queryId := getQueryIdentifier(envelope, i)
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"invalid spec for %s",
queryId,
)
}
if spec.Expression == "" {
queryId := getQueryIdentifier(envelope, i)
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"expression is required for %s",
queryId,
)
}
case QueryTypePromQL:
// PromQL validation is handled separately
spec, ok := envelope.Spec.(PromQuery)
if !ok {
queryId := getQueryIdentifier(envelope, i)
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"invalid spec for %s",
queryId,
)
}
if spec.Query == "" {
queryId := getQueryIdentifier(envelope, i)
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"query expression is required for %s",
queryId,
)
}
case QueryTypeClickHouseSQL:
// ClickHouse SQL validation is handled separately
spec, ok := envelope.Spec.(ClickHouseQuery)
if !ok {
queryId := getQueryIdentifier(envelope, i)
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"invalid spec for %s",
queryId,
)
}
if spec.Query == "" {
queryId := getQueryIdentifier(envelope, i)
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"query expression is required for %s",
queryId,
)
}
default:
queryId := getQueryIdentifier(envelope, i)
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"unknown query type '%s' for %s",
envelope.Type,
queryId,
).WithAdditional(
"Valid query types are: builder_query, builder_formula, builder_join, promql, clickhouse_sql, trace_operator",
)
}
}
return nil
return r.CompositeQuery.Validate(r.RequestType)
}
// Validate performs validation on CompositeQuery
@@ -697,12 +495,29 @@ func (c *CompositeQuery) Validate(requestType RequestType) error {
)
}
// Validate each query
// Track query names for uniqueness (only for builder queries)
queryNames := make(map[string]bool)
for i, envelope := range c.Queries {
if err := validateQueryEnvelope(envelope, requestType); err != nil {
queryId := getQueryIdentifier(envelope, i)
return wrapValidationError(err, queryId, "invalid %s: %s")
}
// Check name uniqueness for builder queries
if envelope.Type == QueryTypeBuilder || envelope.Type == QueryTypeSubQuery {
name := envelope.queryName()
if name != "" {
if queryNames[name] {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"duplicate query name '%s'",
name,
)
}
queryNames[name] = true
}
}
}
return nil
@@ -803,85 +618,3 @@ func validateQueryEnvelope(envelope QueryEnvelope, requestType RequestType) erro
)
}
}
// validateMetricAggregation validates metric-specific aggregation parameters
func validateMetricAggregation(agg MetricAggregation) error {
// we can't decide anything here without known temporality
if agg.Temporality == metrictypes.Unknown {
return nil
}
// Validate that rate/increase are only used with appropriate temporalities
if agg.TimeAggregation == metrictypes.TimeAggregationRate || agg.TimeAggregation == metrictypes.TimeAggregationIncrease {
// For gauge metrics (Unspecified temporality), rate/increase doesn't make sense
if agg.Temporality == metrictypes.Unspecified {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"rate/increase aggregation cannot be used with gauge metrics (unspecified temporality)",
)
}
}
// Validate percentile aggregations are only used with histogram types
if agg.SpaceAggregation.IsPercentile() {
if agg.Type != metrictypes.HistogramType && agg.Type != metrictypes.ExpHistogramType && agg.Type != metrictypes.SummaryType {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"percentile aggregation can only be used with histogram or summary metric types",
)
}
}
// Validate time aggregation values
validTimeAggregations := []metrictypes.TimeAggregation{
metrictypes.TimeAggregationUnspecified,
metrictypes.TimeAggregationLatest,
metrictypes.TimeAggregationSum,
metrictypes.TimeAggregationAvg,
metrictypes.TimeAggregationMin,
metrictypes.TimeAggregationMax,
metrictypes.TimeAggregationCount,
metrictypes.TimeAggregationCountDistinct,
metrictypes.TimeAggregationRate,
metrictypes.TimeAggregationIncrease,
}
validTimeAgg := slices.Contains(validTimeAggregations, agg.TimeAggregation)
if !validTimeAgg {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"invalid time aggregation: %s",
agg.TimeAggregation.StringValue(),
).WithAdditional(
"Valid time aggregations: latest, sum, avg, min, max, count, count_distinct, rate, increase",
)
}
// Validate space aggregation values
validSpaceAggregations := []metrictypes.SpaceAggregation{
metrictypes.SpaceAggregationUnspecified,
metrictypes.SpaceAggregationSum,
metrictypes.SpaceAggregationAvg,
metrictypes.SpaceAggregationMin,
metrictypes.SpaceAggregationMax,
metrictypes.SpaceAggregationCount,
metrictypes.SpaceAggregationPercentile50,
metrictypes.SpaceAggregationPercentile75,
metrictypes.SpaceAggregationPercentile90,
metrictypes.SpaceAggregationPercentile95,
metrictypes.SpaceAggregationPercentile99,
}
validSpaceAgg := slices.Contains(validSpaceAggregations, agg.SpaceAggregation)
if !validSpaceAgg {
return errors.NewInvalidInputf(
errors.CodeInvalidInput,
"invalid space aggregation: %s",
agg.SpaceAggregation.StringValue(),
).WithAdditional(
"Valid space aggregations: sum, avg, min, max, count, p50, p75, p90, p95, p99",
)
}
return nil
}

View File

@@ -333,6 +333,617 @@ func TestQueryRangeRequest_ValidateAllQueriesNotDisabled(t *testing.T) {
}
}
func TestQueryRangeRequest_ValidateCompositeQuery(t *testing.T) {
tests := []struct {
name string
request QueryRangeRequest
wantErr bool
errMsg string
}{
{
name: "empty composite query should return error",
request: QueryRangeRequest{
Start: 1640995200000,
End: 1640998800000,
RequestType: RequestTypeTimeSeries,
CompositeQuery: CompositeQuery{
Queries: []QueryEnvelope{},
},
},
wantErr: true,
errMsg: "at least one query is required",
},
{
name: "duplicate builder query names should return error",
request: QueryRangeRequest{
Start: 1640995200000,
End: 1640998800000,
RequestType: RequestTypeTimeSeries,
CompositeQuery: CompositeQuery{
Queries: []QueryEnvelope{
{
Type: QueryTypeBuilder,
Spec: QueryBuilderQuery[LogAggregation]{
Name: "A",
Disabled: true,
Signal: telemetrytypes.SignalLogs,
},
},
{
Type: QueryTypeBuilder,
Spec: QueryBuilderQuery[TraceAggregation]{
Name: "A",
Disabled: true,
Signal: telemetrytypes.SignalTraces,
},
},
},
},
},
wantErr: true,
errMsg: "duplicate query name 'A'",
},
{
name: "duplicate names across log and metric builder queries should return error",
request: QueryRangeRequest{
Start: 1640995200000,
End: 1640998800000,
RequestType: RequestTypeTimeSeries,
CompositeQuery: CompositeQuery{
Queries: []QueryEnvelope{
{
Type: QueryTypeBuilder,
Spec: QueryBuilderQuery[LogAggregation]{
Name: "X",
Disabled: true,
Signal: telemetrytypes.SignalLogs,
},
},
{
Type: QueryTypeBuilder,
Spec: QueryBuilderQuery[MetricAggregation]{
Name: "X",
Disabled: true,
Signal: telemetrytypes.SignalMetrics,
},
},
},
},
},
wantErr: true,
errMsg: "duplicate query name 'X'",
},
{
name: "same name on formula and builder should not conflict",
request: QueryRangeRequest{
Start: 1640995200000,
End: 1640998800000,
RequestType: RequestTypeTimeSeries,
CompositeQuery: CompositeQuery{
Queries: []QueryEnvelope{
{
Type: QueryTypeBuilder,
Spec: QueryBuilderQuery[LogAggregation]{
Name: "A",
Signal: telemetrytypes.SignalLogs,
Aggregations: []LogAggregation{
{Expression: "count()"},
},
},
},
{
Type: QueryTypeFormula,
Spec: QueryBuilderFormula{
Name: "A",
Expression: "A + 1",
},
},
},
},
},
wantErr: false,
},
{
name: "formula with empty expression should return error",
request: QueryRangeRequest{
Start: 1640995200000,
End: 1640998800000,
RequestType: RequestTypeTimeSeries,
CompositeQuery: CompositeQuery{
Queries: []QueryEnvelope{
{
Type: QueryTypeFormula,
Spec: QueryBuilderFormula{
Name: "F1",
Expression: "",
},
},
},
},
},
wantErr: true,
errMsg: "expression is required",
},
{
name: "promql with empty query should return error",
request: QueryRangeRequest{
Start: 1640995200000,
End: 1640998800000,
RequestType: RequestTypeTimeSeries,
CompositeQuery: CompositeQuery{
Queries: []QueryEnvelope{
{
Type: QueryTypePromQL,
Spec: PromQuery{
Name: "P1",
Query: "",
},
},
},
},
},
wantErr: true,
errMsg: "PromQL query is required",
},
{
name: "clickhouse with empty query should return error",
request: QueryRangeRequest{
Start: 1640995200000,
End: 1640998800000,
RequestType: RequestTypeTimeSeries,
CompositeQuery: CompositeQuery{
Queries: []QueryEnvelope{
{
Type: QueryTypeClickHouseSQL,
Spec: ClickHouseQuery{
Name: "CH1",
Query: "",
},
},
},
},
},
wantErr: true,
errMsg: "ClickHouse SQL query is required",
},
{
name: "trace operator with empty expression should return error",
request: QueryRangeRequest{
Start: 1640995200000,
End: 1640998800000,
RequestType: RequestTypeTimeSeries,
CompositeQuery: CompositeQuery{
Queries: []QueryEnvelope{
{
Type: QueryTypeTraceOperator,
Spec: QueryBuilderTraceOperator{
Name: "TO1",
Expression: "",
},
},
},
},
},
wantErr: true,
errMsg: "expression is required",
},
{
name: "valid promql query should pass",
request: QueryRangeRequest{
Start: 1640995200000,
End: 1640998800000,
RequestType: RequestTypeTimeSeries,
CompositeQuery: CompositeQuery{
Queries: []QueryEnvelope{
{
Type: QueryTypePromQL,
Spec: PromQuery{
Name: "P1",
Query: "up",
},
},
},
},
},
wantErr: false,
},
{
name: "valid clickhouse query should pass",
request: QueryRangeRequest{
Start: 1640995200000,
End: 1640998800000,
RequestType: RequestTypeTimeSeries,
CompositeQuery: CompositeQuery{
Queries: []QueryEnvelope{
{
Type: QueryTypeClickHouseSQL,
Spec: ClickHouseQuery{
Name: "CH1",
Query: "SELECT count() FROM logs",
},
},
},
},
},
wantErr: false,
},
{
name: "valid mixed queries with unique builder names should pass",
request: QueryRangeRequest{
Start: 1640995200000,
End: 1640998800000,
RequestType: RequestTypeTimeSeries,
CompositeQuery: CompositeQuery{
Queries: []QueryEnvelope{
{
Type: QueryTypeBuilder,
Spec: QueryBuilderQuery[LogAggregation]{
Name: "A",
Signal: telemetrytypes.SignalLogs,
Aggregations: []LogAggregation{
{Expression: "count()"},
},
},
},
{
Type: QueryTypeBuilder,
Spec: QueryBuilderQuery[TraceAggregation]{
Name: "B",
Signal: telemetrytypes.SignalTraces,
Aggregations: []TraceAggregation{
{Expression: "count()"},
},
},
},
{
Type: QueryTypePromQL,
Spec: PromQuery{
Name: "C",
Query: "up",
},
},
},
},
},
wantErr: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
err := tt.request.Validate()
if tt.wantErr {
if err == nil {
t.Errorf("Validate() expected error but got none")
return
}
if tt.errMsg != "" && !contains(err.Error(), tt.errMsg) {
t.Errorf("Validate() error = %v, want to contain %v", err.Error(), tt.errMsg)
}
} else {
if err != nil {
t.Errorf("Validate() unexpected error = %v", err)
}
}
})
}
}
func TestValidateQueryEnvelope(t *testing.T) {
tests := []struct {
name string
envelope QueryEnvelope
requestType RequestType
wantErr bool
errMsg string
}{
{
name: "valid builder query with trace aggregation",
envelope: QueryEnvelope{
Type: QueryTypeBuilder,
Spec: QueryBuilderQuery[TraceAggregation]{
Name: "A",
Signal: telemetrytypes.SignalTraces,
Aggregations: []TraceAggregation{
{Expression: "count()"},
},
},
},
requestType: RequestTypeTimeSeries,
wantErr: false,
},
{
name: "valid formula with expression",
envelope: QueryEnvelope{
Type: QueryTypeFormula,
Spec: QueryBuilderFormula{
Name: "F1",
Expression: "A + B",
},
},
requestType: RequestTypeTimeSeries,
wantErr: false,
},
{
name: "formula with empty expression should fail",
envelope: QueryEnvelope{
Type: QueryTypeFormula,
Spec: QueryBuilderFormula{
Name: "F1",
Expression: "",
},
},
requestType: RequestTypeTimeSeries,
wantErr: true,
errMsg: "expression is required",
},
{
name: "valid join spec",
envelope: QueryEnvelope{
Type: QueryTypeJoin,
Spec: QueryBuilderJoin{
Name: "J1",
},
},
requestType: RequestTypeTimeSeries,
wantErr: false,
},
{
name: "valid trace operator",
envelope: QueryEnvelope{
Type: QueryTypeTraceOperator,
Spec: QueryBuilderTraceOperator{
Name: "TO1",
Expression: "count()",
},
},
requestType: RequestTypeTimeSeries,
wantErr: false,
},
{
name: "trace operator with empty expression should fail",
envelope: QueryEnvelope{
Type: QueryTypeTraceOperator,
Spec: QueryBuilderTraceOperator{
Name: "TO1",
Expression: "",
},
},
requestType: RequestTypeTimeSeries,
wantErr: true,
errMsg: "expression is required",
},
{
name: "promql with empty query should fail",
envelope: QueryEnvelope{
Type: QueryTypePromQL,
Spec: PromQuery{
Name: "P1",
Query: "",
},
},
requestType: RequestTypeTimeSeries,
wantErr: true,
errMsg: "PromQL query is required",
},
{
name: "clickhouse with empty query should fail",
envelope: QueryEnvelope{
Type: QueryTypeClickHouseSQL,
Spec: ClickHouseQuery{
Name: "CH1",
Query: "",
},
},
requestType: RequestTypeTimeSeries,
wantErr: true,
errMsg: "ClickHouse SQL query is required",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
err := validateQueryEnvelope(tt.envelope, tt.requestType)
if tt.wantErr {
if err == nil {
t.Errorf("validateQueryEnvelope() expected error but got none")
return
}
if tt.errMsg != "" && !contains(err.Error(), tt.errMsg) {
t.Errorf("validateQueryEnvelope() error = %v, want to contain %v", err.Error(), tt.errMsg)
}
} else {
if err != nil {
t.Errorf("validateQueryEnvelope() unexpected error = %v", err)
}
}
})
}
}
func TestQueryEnvelope_Helpers(t *testing.T) {
t.Run("queryName", func(t *testing.T) {
tests := []struct {
name string
envelope QueryEnvelope
want string
}{
{
name: "trace builder query",
envelope: QueryEnvelope{Type: QueryTypeBuilder, Spec: QueryBuilderQuery[TraceAggregation]{Name: "A"}},
want: "A",
},
{
name: "log builder query",
envelope: QueryEnvelope{Type: QueryTypeBuilder, Spec: QueryBuilderQuery[LogAggregation]{Name: "B"}},
want: "B",
},
{
name: "metric builder query",
envelope: QueryEnvelope{Type: QueryTypeBuilder, Spec: QueryBuilderQuery[MetricAggregation]{Name: "C"}},
want: "C",
},
{
name: "formula",
envelope: QueryEnvelope{Type: QueryTypeFormula, Spec: QueryBuilderFormula{Name: "F1"}},
want: "F1",
},
{
name: "promql",
envelope: QueryEnvelope{Type: QueryTypePromQL, Spec: PromQuery{Name: "P1"}},
want: "P1",
},
{
name: "clickhouse",
envelope: QueryEnvelope{Type: QueryTypeClickHouseSQL, Spec: ClickHouseQuery{Name: "CH1"}},
want: "CH1",
},
{
name: "trace operator",
envelope: QueryEnvelope{Type: QueryTypeTraceOperator, Spec: QueryBuilderTraceOperator{Name: "TO1"}},
want: "TO1",
},
{
name: "join",
envelope: QueryEnvelope{Type: QueryTypeJoin, Spec: QueryBuilderJoin{Name: "J1"}},
want: "J1",
},
{
name: "empty name",
envelope: QueryEnvelope{Type: QueryTypeBuilder, Spec: QueryBuilderQuery[LogAggregation]{}},
want: "",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := tt.envelope.queryName()
if got != tt.want {
t.Errorf("queryName() = %q, want %q", got, tt.want)
}
})
}
})
t.Run("isDisabled", func(t *testing.T) {
tests := []struct {
name string
envelope QueryEnvelope
want bool
}{
{
name: "enabled builder query",
envelope: QueryEnvelope{Type: QueryTypeBuilder, Spec: QueryBuilderQuery[LogAggregation]{Disabled: false}},
want: false,
},
{
name: "disabled builder query",
envelope: QueryEnvelope{Type: QueryTypeBuilder, Spec: QueryBuilderQuery[LogAggregation]{Disabled: true}},
want: true,
},
{
name: "disabled formula",
envelope: QueryEnvelope{Type: QueryTypeFormula, Spec: QueryBuilderFormula{Disabled: true}},
want: true,
},
{
name: "enabled promql",
envelope: QueryEnvelope{Type: QueryTypePromQL, Spec: PromQuery{Disabled: false}},
want: false,
},
{
name: "disabled clickhouse",
envelope: QueryEnvelope{Type: QueryTypeClickHouseSQL, Spec: ClickHouseQuery{Disabled: true}},
want: true,
},
{
name: "disabled trace operator",
envelope: QueryEnvelope{Type: QueryTypeTraceOperator, Spec: QueryBuilderTraceOperator{Disabled: true}},
want: true,
},
{
name: "disabled join",
envelope: QueryEnvelope{Type: QueryTypeJoin, Spec: QueryBuilderJoin{Disabled: true}},
want: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := tt.envelope.isDisabled()
if got != tt.want {
t.Errorf("isDisabled() = %v, want %v", got, tt.want)
}
})
}
})
}
func TestGetQueryIdentifier(t *testing.T) {
tests := []struct {
name string
envelope QueryEnvelope
index int
want string
}{
{
name: "builder query with name",
envelope: QueryEnvelope{Type: QueryTypeBuilder, Spec: QueryBuilderQuery[LogAggregation]{Name: "A"}},
index: 0,
want: "query 'A'",
},
{
name: "builder query without name",
envelope: QueryEnvelope{Type: QueryTypeBuilder, Spec: QueryBuilderQuery[LogAggregation]{}},
index: 2,
want: "query at position 3",
},
{
name: "formula with name",
envelope: QueryEnvelope{Type: QueryTypeFormula, Spec: QueryBuilderFormula{Name: "F1"}},
index: 0,
want: "formula 'F1'",
},
{
name: "formula without name",
envelope: QueryEnvelope{Type: QueryTypeFormula, Spec: QueryBuilderFormula{}},
index: 1,
want: "formula at position 2",
},
{
name: "promql with name",
envelope: QueryEnvelope{Type: QueryTypePromQL, Spec: PromQuery{Name: "P1"}},
index: 0,
want: "PromQL query 'P1'",
},
{
name: "clickhouse with name",
envelope: QueryEnvelope{Type: QueryTypeClickHouseSQL, Spec: ClickHouseQuery{Name: "CH1"}},
index: 0,
want: "ClickHouse query 'CH1'",
},
{
name: "trace operator with name",
envelope: QueryEnvelope{Type: QueryTypeTraceOperator, Spec: QueryBuilderTraceOperator{Name: "TO1"}},
index: 0,
want: "trace operator 'TO1'",
},
{
name: "join without name",
envelope: QueryEnvelope{Type: QueryTypeJoin, Spec: QueryBuilderJoin{}},
index: 0,
want: "join at position 1",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := getQueryIdentifier(tt.envelope, tt.index)
if got != tt.want {
t.Errorf("getQueryIdentifier() = %q, want %q", got, tt.want)
}
})
}
}
func TestQueryRangeRequest_ValidateOrderByForAggregation(t *testing.T) {
tests := []struct {
name string
@@ -512,4 +1123,139 @@ func TestQueryRangeRequest_ValidateOrderByForAggregation(t *testing.T) {
}
})
}
}
}
func TestRequestType_IsAggregation(t *testing.T) {
tests := []struct {
name string
requestType RequestType
want bool
}{
{"time_series is aggregation", RequestTypeTimeSeries, true},
{"scalar is aggregation", RequestTypeScalar, true},
{"distribution is aggregation", RequestTypeDistribution, true},
{"raw is not aggregation", RequestTypeRaw, false},
{"raw_stream is not aggregation", RequestTypeRawStream, false},
{"trace is not aggregation", RequestTypeTrace, false},
{"unknown is not aggregation", RequestTypeUnknown, false},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := tt.requestType.IsAggregation()
if got != tt.want {
t.Errorf("IsAggregation() = %v, want %v", got, tt.want)
}
})
}
}
func TestNonAggregationFieldsSkipped(t *testing.T) {
// Fields that only apply to aggregation queries (groupBy, having, aggregations)
// should be silently skipped for non-aggregation request types.
t.Run("groupBy ignored for raw request type", func(t *testing.T) {
query := QueryBuilderQuery[LogAggregation]{
Name: "A",
Signal: telemetrytypes.SignalLogs,
GroupBy: []GroupByKey{
{TelemetryFieldKey: telemetrytypes.TelemetryFieldKey{Name: "service.name"}},
},
}
err := query.Validate(RequestTypeRaw)
if err != nil {
t.Errorf("expected no error for groupBy with raw request type, got: %v", err)
}
})
t.Run("groupBy validated for timeseries request type", func(t *testing.T) {
query := QueryBuilderQuery[LogAggregation]{
Name: "A",
Signal: telemetrytypes.SignalLogs,
Aggregations: []LogAggregation{
{Expression: "count()"},
},
GroupBy: []GroupByKey{
{TelemetryFieldKey: telemetrytypes.TelemetryFieldKey{Name: ""}},
},
}
err := query.Validate(RequestTypeTimeSeries)
if err == nil {
t.Errorf("expected error for empty groupBy key with timeseries request type")
}
})
t.Run("having ignored for raw request type", func(t *testing.T) {
query := QueryBuilderQuery[LogAggregation]{
Name: "A",
Signal: telemetrytypes.SignalLogs,
Having: &Having{Expression: "count() > 10"},
}
err := query.Validate(RequestTypeRaw)
if err != nil {
t.Errorf("expected no error for having with raw request type, got: %v", err)
}
})
t.Run("having ignored for trace request type", func(t *testing.T) {
query := QueryBuilderQuery[TraceAggregation]{
Name: "A",
Signal: telemetrytypes.SignalTraces,
Having: &Having{Expression: "count() > 10"},
}
err := query.Validate(RequestTypeTrace)
if err != nil {
t.Errorf("expected no error for having with trace request type, got: %v", err)
}
})
t.Run("aggregations ignored for raw request type", func(t *testing.T) {
query := QueryBuilderQuery[LogAggregation]{
Name: "A",
Signal: telemetrytypes.SignalLogs,
Aggregations: []LogAggregation{
{Expression: "count()"},
},
}
err := query.Validate(RequestTypeRaw)
if err != nil {
t.Errorf("expected no error for aggregations with raw request type, got: %v", err)
}
})
t.Run("aggregations ignored for raw_stream request type", func(t *testing.T) {
query := QueryBuilderQuery[LogAggregation]{
Name: "A",
Signal: telemetrytypes.SignalLogs,
Aggregations: []LogAggregation{
{Expression: "count()"},
},
}
err := query.Validate(RequestTypeRawStream)
if err != nil {
t.Errorf("expected no error for aggregations with raw_stream request type, got: %v", err)
}
})
t.Run("selectFields validated for raw but not timeseries", func(t *testing.T) {
query := QueryBuilderQuery[TraceAggregation]{
Name: "A",
Signal: telemetrytypes.SignalTraces,
Aggregations: []TraceAggregation{
{Expression: "count()"},
},
SelectFields: []telemetrytypes.TelemetryFieldKey{
{Name: "isRoot"},
},
}
// Should error for raw (selectFields are validated)
err := query.Validate(RequestTypeRaw)
if err == nil {
t.Errorf("expected error for isRoot in selectFields with raw request type")
}
// Should pass for timeseries (selectFields skipped)
err = query.Validate(RequestTypeTimeSeries)
if err != nil {
t.Errorf("expected no error for isRoot in selectFields with timeseries request type, got: %v", err)
}
})
}

View File

@@ -78,18 +78,18 @@ func (f *TelemetryFieldKey) ArrayParentSelectors() []*FieldKeySelector {
func (f TelemetryFieldKey) String() string {
var sb strings.Builder
sb.WriteString(fmt.Sprintf("name=%s", f.Name))
fmt.Fprintf(&sb, "name=%s", f.Name)
if f.FieldContext != FieldContextUnspecified {
sb.WriteString(fmt.Sprintf(",context=%s", f.FieldContext.String))
fmt.Fprintf(&sb, ",context=%s", f.FieldContext.String)
}
if f.FieldDataType != FieldDataTypeUnspecified {
sb.WriteString(fmt.Sprintf(",datatype=%s", f.FieldDataType.StringValue()))
fmt.Fprintf(&sb, ",datatype=%s", f.FieldDataType.StringValue())
}
if f.Materialized {
sb.WriteString(",materialized=true")
}
if f.JSONDataType != nil {
sb.WriteString(fmt.Sprintf(",jsondatatype=%s", f.JSONDataType.StringValue()))
fmt.Fprintf(&sb, ",jsondatatype=%s", f.JSONDataType.StringValue())
}
if len(f.Indexes) > 0 {
sb.WriteString(",indexes=[")
@@ -97,7 +97,7 @@ func (f TelemetryFieldKey) String() string {
if i > 0 {
sb.WriteString("; ")
}
sb.WriteString(fmt.Sprintf("{type=%s, columnExpr=%s, indexExpr=%s}", index.Type.StringValue(), index.ColumnExpression, index.IndexExpression))
fmt.Fprintf(&sb, "{type=%s, columnExpr=%s, indexExpr=%s}", index.Type.StringValue(), index.ColumnExpression, index.IndexExpression)
}
sb.WriteString("]")
}
@@ -108,6 +108,17 @@ func (f TelemetryFieldKey) Text() string {
return TelemetryFieldKeyToText(&f)
}
// OverrideMetadataFrom copies the resolved metadata fields from src into f.
// This is used when adjusting user-provided keys to match known field definitions.
func (f *TelemetryFieldKey) OverrideMetadataFrom(src *TelemetryFieldKey) {
f.FieldContext = src.FieldContext
f.FieldDataType = src.FieldDataType
f.JSONDataType = src.JSONDataType
f.Indexes = src.Indexes
f.Materialized = src.Materialized
f.JSONPlan = src.JSONPlan
}
func (f *TelemetryFieldKey) Equal(key *TelemetryFieldKey) bool {
return f.Name == key.Name &&
f.FieldContext == key.FieldContext &&
@@ -225,11 +236,19 @@ func TelemetryFieldKeyToText(key *TelemetryFieldKey) string {
}
func FieldKeyToMaterializedColumnName(key *TelemetryFieldKey) string {
return fmt.Sprintf("`%s_%s_%s`", key.FieldContext.String, fieldDataTypes[key.FieldDataType.StringValue()].StringValue(), strings.ReplaceAll(key.Name, ".", "$$"))
return fmt.Sprintf("`%s_%s_%s`",
key.FieldContext.String,
fieldDataTypes[key.FieldDataType.StringValue()].StringValue(),
strings.ReplaceAll(key.Name, ".", "$$"),
)
}
func FieldKeyToMaterializedColumnNameForExists(key *TelemetryFieldKey) string {
return fmt.Sprintf("`%s_%s_%s_exists`", key.FieldContext.String, fieldDataTypes[key.FieldDataType.StringValue()].StringValue(), strings.ReplaceAll(key.Name, ".", "$$"))
return fmt.Sprintf("`%s_%s_%s_exists`",
key.FieldContext.String,
fieldDataTypes[key.FieldDataType.StringValue()].StringValue(),
strings.ReplaceAll(key.Name, ".", "$$"),
)
}
type TelemetryFieldValues struct {

View File

@@ -14,10 +14,10 @@ from fixtures.alertutils import (
from fixtures.logger import setup_logger
from fixtures.utils import get_testdata_file_path
# test cases for match type and compare operators have wait time of 30 seconds to verify the alert expectation.
# we've poistioned the alert data to fire the alert on first eval of rule manager, the eval frequency
# for most alert rules are set of 15s so considering this delay plus some delay from alert manager's
# group_wait and group_interval, even in worst case most alerts should be triggered in about 30 seconds
# Alert test cases use a 30-second wait time to verify expected alert firing.
# Alert data is set up to trigger on the first rule manager evaluation.
# With a 15-second eval frequency for most rules, plus alertmanager's
# group_wait and group_interval delays, alerts should fire well within 30 seconds.
TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
types.AlertTestCase(
name="test_threshold_above_at_least_once",
@@ -25,6 +25,7 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
alert_data=[
types.AlertData(
type="metrics",
# active requests dummy data
data_path="alerts/test_scenarios/threshold_above_at_least_once/alert_data.jsonl",
),
],
@@ -115,30 +116,28 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
],
),
),
# TODO: @abhishekhugetech enable the test for matchType last, pylint: disable=W0511
# after the [issue](https://github.com/SigNoz/engineering-pod/issues/3801) with matchType last is fixed
# types.AlertTestCase(
# name="test_threshold_above_last",
# rule_path="alerts/test_scenarios/threshold_above_last/rule.json",
# alert_data=[
# types.AlertData(
# type="metrics",
# data_path="alerts/test_scenarios/threshold_above_last/alert_data.jsonl",
# ),
# ],
# alert_expectation=types.AlertExpectation(
# should_alert=True,
# wait_time_seconds=30,
# expected_alerts=[
# types.FiringAlert(
# labels={
# "alertname": "threshold_above_last",
# "threshold.name": "critical",
# }
# ),
# ],
# ),
# ),
types.AlertTestCase(
name="test_threshold_above_last",
rule_path="alerts/test_scenarios/threshold_above_last/rule.json",
alert_data=[
types.AlertData(
type="metrics",
data_path="alerts/test_scenarios/threshold_above_last/alert_data.jsonl",
),
],
alert_expectation=types.AlertExpectation(
should_alert=True,
wait_time_seconds=30,
expected_alerts=[
types.FiringAlert(
labels={
"alertname": "threshold_above_last",
"threshold.name": "critical",
}
),
],
),
),
types.AlertTestCase(
name="test_threshold_below_at_least_once",
rule_path="alerts/test_scenarios/threshold_below_at_least_once/rule.json",
@@ -189,6 +188,7 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
alert_data=[
types.AlertData(
type="metrics",
# one rate ~5 + rest 0.01 so it remains in total below 10
data_path="alerts/test_scenarios/threshold_below_in_total/alert_data.jsonl",
),
],
@@ -227,30 +227,28 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
],
),
),
# TODO: @abhishekhugetech enable the test for matchType last,
# after the [issue](https://github.com/SigNoz/engineering-pod/issues/3801) with matchType last is fixed, pylint: disable=W0511
# types.AlertTestCase(
# name="test_threshold_below_last",
# rule_path="alerts/test_scenarios/threshold_below_last/rule.json",
# alert_data=[
# types.AlertData(
# type="metrics",
# data_path="alerts/test_scenarios/threshold_below_last/alert_data.jsonl",
# ),
# ],
# alert_expectation=types.AlertExpectation(
# should_alert=True,
# wait_time_seconds=30,
# expected_alerts=[
# types.FiringAlert(
# labels={
# "alertname": "threshold_below_last",
# "threshold.name": "critical",
# }
# ),
# ],
# ),
# ),
types.AlertTestCase(
name="test_threshold_below_last",
rule_path="alerts/test_scenarios/threshold_below_last/rule.json",
alert_data=[
types.AlertData(
type="metrics",
data_path="alerts/test_scenarios/threshold_below_last/alert_data.jsonl",
),
],
alert_expectation=types.AlertExpectation(
should_alert=True,
wait_time_seconds=30,
expected_alerts=[
types.FiringAlert(
labels={
"alertname": "threshold_below_last",
"threshold.name": "critical",
}
),
],
),
),
types.AlertTestCase(
name="test_threshold_equal_to_at_least_once",
rule_path="alerts/test_scenarios/threshold_equal_to_at_least_once/rule.json",
@@ -339,30 +337,28 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
],
),
),
# TODO: @abhishekhugetech enable the test for matchType last,
# after the [issue](https://github.com/SigNoz/engineering-pod/issues/3801) with matchType last is fixed, pylint: disable=W0511
# types.AlertTestCase(
# name="test_threshold_equal_to_last",
# rule_path="alerts/test_scenarios/threshold_equal_to_last/rule.json",
# alert_data=[
# types.AlertData(
# type="metrics",
# data_path="alerts/test_scenarios/threshold_equal_to_last/alert_data.jsonl",
# ),
# ],
# alert_expectation=types.AlertExpectation(
# should_alert=True,
# wait_time_seconds=30,
# expected_alerts=[
# types.FiringAlert(
# labels={
# "alertname": "threshold_equal_to_last",
# "threshold.name": "critical",
# }
# ),
# ],
# ),
# ),
types.AlertTestCase(
name="test_threshold_equal_to_last",
rule_path="alerts/test_scenarios/threshold_equal_to_last/rule.json",
alert_data=[
types.AlertData(
type="metrics",
data_path="alerts/test_scenarios/threshold_equal_to_last/alert_data.jsonl",
),
],
alert_expectation=types.AlertExpectation(
should_alert=True,
wait_time_seconds=30,
expected_alerts=[
types.FiringAlert(
labels={
"alertname": "threshold_equal_to_last",
"threshold.name": "critical",
}
),
],
),
),
types.AlertTestCase(
name="test_threshold_not_equal_to_at_least_once",
rule_path="alerts/test_scenarios/threshold_not_equal_to_at_least_once/rule.json",
@@ -451,30 +447,28 @@ TEST_RULES_MATCH_TYPE_AND_COMPARE_OPERATORS = [
],
),
),
# TODO: @abhishekhugetech enable the test for matchType last,
# after the [issue](https://github.com/SigNoz/engineering-pod/issues/3801) with matchType last is fixed, pylint: disable=W0511
# types.AlertTestCase(
# name="test_threshold_not_equal_to_last",
# rule_path="alerts/test_scenarios/threshold_not_equal_to_last/rule.json",
# alert_data=[
# types.AlertData(
# type="metrics",
# data_path="alerts/test_scenarios/threshold_not_equal_to_last/alert_data.jsonl",
# ),
# ],
# alert_expectation=types.AlertExpectation(
# should_alert=True,
# wait_time_seconds=30,
# expected_alerts=[
# types.FiringAlert(
# labels={
# "alertname": "threshold_not_equal_to_last",
# "threshold.name": "critical",
# }
# ),
# ],
# ),
# ),
types.AlertTestCase(
name="test_threshold_not_equal_to_last",
rule_path="alerts/test_scenarios/threshold_not_equal_to_last/rule.json",
alert_data=[
types.AlertData(
type="metrics",
data_path="alerts/test_scenarios/threshold_not_equal_to_last/alert_data.jsonl",
),
],
alert_expectation=types.AlertExpectation(
should_alert=True,
wait_time_seconds=30,
expected_alerts=[
types.FiringAlert(
labels={
"alertname": "threshold_not_equal_to_last",
"threshold.name": "critical",
}
),
],
),
),
]
# test cases unit conversion

File diff suppressed because it is too large Load Diff

View File

@@ -54,17 +54,17 @@ def test_rate_with_steady_values_and_reset(
data = response.json()
result_values = sorted(get_series_values(data, "A"), key=lambda x: x["timestamp"])
assert len(result_values) >= 59
assert len(result_values) >= 58
# the counter reset happened at 31st minute
assert (
result_values[30]["value"] == 0.0167
result_values[29]["value"] == 0.0167
) # i.e 2/120 i.e 29th to 31st minute changes
assert (
result_values[31]["value"] == 0.133
result_values[30]["value"] == 0.133
) # i.e 10/60 i.e 31st to 32nd minute changes
count_of_steady_rate = sum(1 for v in result_values if v["value"] == 0.0833)
assert (
count_of_steady_rate >= 56
count_of_steady_rate >= 55
) # 59 - (1 reset + 1 high rate + 1 at the beginning)
# All rates should be non-negative (stale periods = 0 rate)
for v in result_values:

View File

@@ -72,16 +72,17 @@ def test_with_steady_values_and_reset(
data = response.json()
result_values = sorted(get_series_values(data, "A"), key=lambda x: x["timestamp"])
assert len(result_values) >= 59
assert len(result_values) >= 58
# the counter reset happened at 31st minute
assert result_values[30]["value"] == expected_value_at_31st_minute
assert result_values[31]["value"] == expected_value_at_32nd_minute
# we skip the rate value for the first data point without previous value
assert result_values[29]["value"] == expected_value_at_31st_minute
assert result_values[30]["value"] == expected_value_at_32nd_minute
assert (
result_values[39]["value"] == steady_value
) # 39th minute is when cumulative shifts to delta
result_values[38]["value"] == steady_value
) # 38th minute is when cumulative shifts to delta
count_of_steady_rate = sum(1 for v in result_values if v["value"] == steady_value)
assert (
count_of_steady_rate >= 56
count_of_steady_rate >= 55
) # 59 - (1 reset + 1 high rate + 1 at the beginning)
# All rates should be non-negative (stale periods = 0 rate)
for v in result_values:
@@ -316,12 +317,12 @@ def test_for_service_with_switch(
data = response.json()
result_values = sorted(get_series_values(data, "A"), key=lambda x: x["timestamp"])
assert len(result_values) >= 60
assert result_values[30]["value"] == expected_value_at_30th_minute # 0.183
assert result_values[31]["value"] == expected_value_at_31st_minute # 0.183
assert result_values[38]["value"] == value_at_switch # 0.25
assert len(result_values) >= 59
assert result_values[29]["value"] == expected_value_at_30th_minute # 0.183
assert result_values[30]["value"] == expected_value_at_31st_minute # 0.183
assert result_values[37]["value"] == value_at_switch # 0.25
assert (
result_values[39]["value"] == value_at_switch # 0.25
result_values[38]["value"] == value_at_switch # 0.25
) # 39th minute is when cumulative shifts to delta
# All rates should be non-negative (stale periods = 0 rate)
for v in result_values:

View File

@@ -1,12 +1,12 @@
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:01:00+00:00","value":1,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:02:00+00:00","value":2,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:03:00+00:00","value":3,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:04:00+00:00","value":4,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:05:00+00:00","value":19,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:06:00+00:00","value":20,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:07:00+00:00","value":35,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:08:00+00:00","value":36,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:09:00+00:00","value":37,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:10:00+00:00","value":38,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:11:00+00:00","value":39,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:12:00+00:00","value":40,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:01:00+00:00","value":1,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:02:00+00:00","value":2,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:03:00+00:00","value":4,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:04:00+00:00","value":4,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:05:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:06:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:07:00+00:00","value":36,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:08:00+00:00","value":25,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:09:00+00:00","value":37,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:10:00+00:00","value":35,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:11:00+00:00","value":39,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"request_total_threshold_above_at_least_once","labels":{"service":"api","endpoint":"/health","status_code":"200"},"timestamp":"2026-01-29T10:12:00+00:00","value":25,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}

View File

@@ -25,7 +25,7 @@
"type": "clickhouse_sql",
"spec": {
"name": "A",
"query": "WITH __temporal_aggregation_cte AS (\n SELECT \n fingerprint, \n toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(60)) AS ts, \n avg(value) AS per_series_value \n FROM signoz_metrics.distributed_samples_v4 AS points \n INNER JOIN (\n SELECT fingerprint \n FROM signoz_metrics.time_series_v4 \n WHERE metric_name IN ('request_total_threshold_above_at_least_once') \n AND LOWER(temporality) LIKE LOWER('cumulative') \n AND __normalized = false \n GROUP BY fingerprint\n ) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint \n WHERE metric_name IN ('request_total_threshold_above_at_least_once') \n AND unix_milli >= {{.start_timestamp_ms}} \n AND unix_milli < {{.end_timestamp_ms}} \n GROUP BY fingerprint, ts \n ORDER BY fingerprint, ts\n), \n__spatial_aggregation_cte AS (\n SELECT \n ts, \n avg(per_series_value) AS value \n FROM __temporal_aggregation_cte \n WHERE isNaN(per_series_value) = 0 \n GROUP BY ts\n) \nSELECT * FROM __spatial_aggregation_cte \nORDER BY ts"
"query": "WITH __temporal_aggregation_cte AS (\n SELECT \n fingerprint, \n toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), toIntervalSecond(60)) AS ts, \n avg(value) AS per_series_value \n FROM signoz_metrics.distributed_samples_v4 AS points \n INNER JOIN (\n SELECT fingerprint \n FROM signoz_metrics.time_series_v4 \n WHERE metric_name IN ('request_total_threshold_above_at_least_once') \n AND LOWER(temporality) LIKE LOWER('cumulative') \n AND __normalized = false \n GROUP BY fingerprint\n ) AS filtered_time_series ON points.fingerprint = filtered_time_series.fingerprint \n WHERE metric_name IN ('request_total_threshold_above_at_least_once') \n AND unix_milli >= $start_timestamp_ms \n AND unix_milli < $end_timestamp_ms \n GROUP BY fingerprint, ts \n ORDER BY fingerprint, ts\n), \n__spatial_aggregation_cte AS (\n SELECT \n ts, \n sum(per_series_value) AS value \n FROM __temporal_aggregation_cte \n WHERE isNaN(per_series_value) = 0 \n GROUP BY ts\n) \nSELECT * FROM __spatial_aggregation_cte \nORDER BY ts"
}
}
]

View File

@@ -1,12 +1,12 @@
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":5,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":20,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":31,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":46,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":58,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":71,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":76,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":81,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":86,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":91,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":5,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":12,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":31,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":23,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":58,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":71,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":45,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":81,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":86,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_threshold_above_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":91,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}

View File

@@ -1,12 +1,12 @@
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":5,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":20,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":30,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":40,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":50,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":55,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":60,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":65,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":70,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":75,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":5,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":15,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":20,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":10,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":45,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":60,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":65,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":34,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_mb_threshold_equal_to_last","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":75,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}

View File

@@ -1,12 +1,12 @@
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":524288,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":1048576,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":1572864,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":2097152,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":3770016,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":5642880,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":10515744,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":11038632,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":11561520,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":12084408,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":12607296,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":13130184,"temporality":"Cumulative","type_":"Sum","is_monotonic":true,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:01:00+00:00","value":524288,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:02:00+00:00","value":1048576,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:03:00+00:00","value":1572864,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:04:00+00:00","value":2097152,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:05:00+00:00","value":3770016,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:06:00+00:00","value":5642880,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:07:00+00:00","value":10515744,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:08:00+00:00","value":11038632,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:09:00+00:00","value":11561520,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:10:00+00:00","value":12084408,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:11:00+00:00","value":12607296,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}
{"metric_name":"disk_usage_unit_conversion_bytes_to_mb","labels":{"device":"/dev/sda1","mountpoint":"/"},"timestamp":"2026-01-29T10:12:00+00:00","value":13130184,"temporality":"Cumulative","type_":"Sum","is_monotonic":false,"flags":0,"description":"","unit":"","env":"default","resource_attrs":{},"scope_attrs":{}}